ahmedesmail16 commited on
Commit
c5d771f
·
verified ·
1 Parent(s): 5416be8

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: Train-Test-Augmentation-V44-beit-base
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Train-Test-Augmentation-V44-beit-base
17
+
18
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5318
21
+ - Accuracy: 0.8142
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 5
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | 1.6031 | 0.9825 | 28 | 0.9362 | 0.7132 |
57
+ | 0.5124 | 2.0 | 57 | 0.6364 | 0.7933 |
58
+ | 0.2676 | 2.9825 | 85 | 0.5382 | 0.8125 |
59
+ | 0.1263 | 4.0 | 114 | 0.5486 | 0.8114 |
60
+ | 0.0833 | 4.9123 | 140 | 0.5318 | 0.8142 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.41.1
66
+ - Pytorch 2.1.2
67
+ - Datasets 2.19.2
68
+ - Tokenizers 0.19.1