Commit
·
ee812da
1
Parent(s):
6569319
Add evaluation results on the sentences_allagree config and train split of financial_phrasebank
Browse filesBeep boop, I am a bot from Hugging Face's automatic model evaluator 👋!\
Your model has been evaluated on the sentences_allagree config and train split of the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) dataset by
@du
, using the predictions stored [here](https://huggingface.co/datasets/autoevaluate/autoeval-eval-financial_phrasebank-sentences_allagree-c1bf87-48200145240).\
Accept this pull request to see the results displayed on the [Hub leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=financial_phrasebank).\
Evaluate your model on more datasets [here](https://huggingface.co/spaces/autoevaluate/model-evaluator?dataset=financial_phrasebank).
README.md
CHANGED
@@ -6,9 +6,79 @@ tags:
|
|
6 |
datasets:
|
7 |
- financial_phrasebank
|
8 |
widget:
|
9 |
-
- text: Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding
|
10 |
-
|
11 |
-
- text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
### FinancialBERT for Sentiment Analysis
|
14 |
|
|
|
6 |
datasets:
|
7 |
- financial_phrasebank
|
8 |
widget:
|
9 |
+
- text: Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding
|
10 |
+
period in 2007 representing 7.7 % of net sales.
|
11 |
+
- text: Bids or offers include at least 1,000 shares and the value of the shares must
|
12 |
+
correspond to at least EUR 4,000.
|
13 |
+
- text: Raute reported a loss per share of EUR 0.86 for the first half of 2009 , against
|
14 |
+
EPS of EUR 0.74 in the corresponding period of 2008.
|
15 |
+
model-index:
|
16 |
+
- name: ahmedrachid/FinancialBERT-Sentiment-Analysis
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-classification
|
20 |
+
name: Text Classification
|
21 |
+
dataset:
|
22 |
+
name: financial_phrasebank
|
23 |
+
type: financial_phrasebank
|
24 |
+
config: sentences_allagree
|
25 |
+
split: train
|
26 |
+
metrics:
|
27 |
+
- type: accuracy
|
28 |
+
value: 0.9889575971731449
|
29 |
+
name: Accuracy
|
30 |
+
verified: true
|
31 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMyOTZhYTA3YjdjNDkwNWVjMGRlZGQxZDM1NTBmNGFkMWM0MzM2YTJiNzI4NzBjMzFiNTMwMzVkYTJmYmNlOCIsInZlcnNpb24iOjF9.9eOX4kC5HiagnTMpBp83H8ifgjzqwSa_tzLCjH8eMxRM6EKOhd9zWIYDtPWoKvNXpODjwRYLg38xKf09p6ZxCA
|
32 |
+
- type: f1
|
33 |
+
value: 0.9862110528444945
|
34 |
+
name: F1 Macro
|
35 |
+
verified: true
|
36 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDBlNzhjZWU0YzIwMmIxMDkxNjk4NTkwNzA0N2RlODE5ZmNjMzVlYTBkZjJlYTlmODNiODcwMTNiZGRjYjE4NSIsInZlcnNpb24iOjF9.U_E-FCEFDIvzz7C1TWKRE0e9cSPlbV1VYy2SLAc1b-V3gonR1xUMosUwr99MTxsYSBaBAk9iyACXnefK_O45BQ
|
37 |
+
- type: f1
|
38 |
+
value: 0.9889575971731449
|
39 |
+
name: F1 Micro
|
40 |
+
verified: true
|
41 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY0NTM2YThkY2VlOTZlOGZlZWMxMTU0NmIzNzNkNjIzMGI2NDM1Mjk2MzFiM2Y4MTQ5MWJmNzQxM2JmNjY1MiIsInZlcnNpb24iOjF9.6xsjHU05UtDn6vTo39MTu0Rle6CNf75dgoWqMOegs6WAW3QC6ndHhQPSGm1LriQ14IQ5J_JYK01yVXoRn1MjCg
|
42 |
+
- type: f1
|
43 |
+
value: 0.9889906387631547
|
44 |
+
name: F1 Weighted
|
45 |
+
verified: true
|
46 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFmN2YwMjU1MDlkMTVjYjc5YWQ3MmQ2M2NlMWVjNWJlNDMxZjU4NTg4MjQ2NmFhZGE4OThhZjZiNjQ5N2E2OCIsInZlcnNpb24iOjF9.jvWFrjazySS_B9KZUexiATqObR826IP8eIT1O6eEZcu8GjiOCXcuNVlSfuqLFfysDWKpZXCbazSd9saUKloFCQ
|
47 |
+
- type: precision
|
48 |
+
value: 0.9854095875205817
|
49 |
+
name: Precision Macro
|
50 |
+
verified: true
|
51 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhNTI0OTVhYmUxZjAxNzZkMmY4NDIwOTVlOTQ1MjA4OTZjZTNmMWZiOTg4NmFhNzY1NDViZmE3ZDFhYTZjMyIsInZlcnNpb24iOjF9.zKeviEdhTqP5Y1BmtVaBMW_3nhSd-gfXwxMVjwnaUsZNxURWUKJfCe7MACdetVtnX7Jz6ZUSybZYaZ3obUqMCw
|
52 |
+
- type: precision
|
53 |
+
value: 0.9889575971731449
|
54 |
+
name: Precision Micro
|
55 |
+
verified: true
|
56 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQ3ZDViNTg0YzRlZTdlMjIyOWI5YTczNjZkZDJkNTZjNTQ5ZTc3YzY0NTI1YjMzMWQ5ODUxOWU2NzhmZjA4NSIsInZlcnNpb24iOjF9.Iaaol0A48I9ioGXYj8Tl0sWDQySxRlruUL3RiAR9NXureRbFQGuJBgF9Sd0WRrRe_0MFxkaOsXgkvBTh0u1IBg
|
57 |
+
- type: precision
|
58 |
+
value: 0.9891088373207723
|
59 |
+
name: Precision Weighted
|
60 |
+
verified: true
|
61 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDljNGIzYzdhOGQzYjRlNDE2ZjUwY2NjNzRhYmE1NjM4YjVkNTIwYTIyMmE4ODM5MTZkNWM1YzY2ZmRkMTc2YSIsInZlcnNpb24iOjF9.-ZULRBdW0VbSr6e64WDdKW3Ny5qT38O2lH669cQSbwp30PjPPUFO4oXhDWm4QIOjI0NfOiTjrbLTVQ7gR0vABg
|
62 |
+
- type: recall
|
63 |
+
value: 0.987120462774644
|
64 |
+
name: Recall Macro
|
65 |
+
verified: true
|
66 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODVlYTE5NGMxMGIyM2UxN2ZhNmRiODM1ODhkZmNhNTNmMzVhNjg3M2FlYTM2NTI0MGQyN2ViM2YzODI0M2I0YyIsInZlcnNpb24iOjF9.yDZFOIzW041-s6dWxaap--K0-6Hp52hc_6rIi8_f3E-Q52WcJNLL0VHMBo0g2I3cT7UVRoIqPYoRxNgyHaZnAw
|
67 |
+
- type: recall
|
68 |
+
value: 0.9889575971731449
|
69 |
+
name: Recall Micro
|
70 |
+
verified: true
|
71 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmU4ZTg3MWEzNGZhMTY0MzQ1MjRmMTg1NTJmZjg0YWM3OGY4OGU5NWU0NmY0MmQ2YzZiNDYxMmFlNTNkZmUxYiIsInZlcnNpb24iOjF9.mvsikLjKldZ0SFThbAcygYEoJUNCQYE_bIbYyikMUHrSdY0BRlYsH5A32bu1BXAVMZVJVV9ebkSPmdKjZKIFAw
|
72 |
+
- type: recall
|
73 |
+
value: 0.9889575971731449
|
74 |
+
name: Recall Weighted
|
75 |
+
verified: true
|
76 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhjNDY2Mjk0NzQyN2NjYTIxZmI5YTE1YTBkOTkzOGI3YTlmZDA1MzgxMTY4MmY3MmRkNjI4OTg4OWNmNTI0NCIsInZlcnNpb24iOjF9.zUaL-986kOJjv_VtlJAlvuEq0AxxlZaISlsmNFgvjifiFRpfPx5_-mKLkbsFjkS2q-_MQ8jTMMpQoiTVbaJMAA
|
77 |
+
- type: loss
|
78 |
+
value: 0.05342382565140724
|
79 |
+
name: loss
|
80 |
+
verified: true
|
81 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTZkNzJmYWM2MzExM2YzOTUzMzJkZmIyOGNhMjNkZTU3NWRlOWEyMWE5ZGY4MDU3Yjk2MTU4NTExMTg0M2I4ZCIsInZlcnNpb24iOjF9.cwtia03w0NY4FPTj9doI3S45t50HyhjNEttRg7tcr00vA5y_6xEak7OKMXkGQZ2noribvuRyf4218STYNTHlAQ
|
82 |
---
|
83 |
### FinancialBERT for Sentiment Analysis
|
84 |
|