autoevaluator HF staff commited on
Commit
ee812da
·
1 Parent(s): 6569319

Add evaluation results on the sentences_allagree config and train split of financial_phrasebank

Browse files

Beep boop, I am a bot from Hugging Face's automatic model evaluator 👋!\
Your model has been evaluated on the sentences_allagree config and train split of the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) dataset by

@du
, using the predictions stored [here](https://huggingface.co/datasets/autoevaluate/autoeval-eval-financial_phrasebank-sentences_allagree-c1bf87-48200145240).\
Accept this pull request to see the results displayed on the [Hub leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=financial_phrasebank).\
Evaluate your model on more datasets [here](https://huggingface.co/spaces/autoevaluate/model-evaluator?dataset=financial_phrasebank).

Files changed (1) hide show
  1. README.md +73 -3
README.md CHANGED
@@ -6,9 +6,79 @@ tags:
6
  datasets:
7
  - financial_phrasebank
8
  widget:
9
- - text: Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding period in 2007 representing 7.7 % of net sales.
10
- - text: Bids or offers include at least 1,000 shares and the value of the shares must correspond to at least EUR 4,000.
11
- - text: Raute reported a loss per share of EUR 0.86 for the first half of 2009 , against EPS of EUR 0.74 in the corresponding period of 2008.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
  ### FinancialBERT for Sentiment Analysis
14
 
 
6
  datasets:
7
  - financial_phrasebank
8
  widget:
9
+ - text: Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding
10
+ period in 2007 representing 7.7 % of net sales.
11
+ - text: Bids or offers include at least 1,000 shares and the value of the shares must
12
+ correspond to at least EUR 4,000.
13
+ - text: Raute reported a loss per share of EUR 0.86 for the first half of 2009 , against
14
+ EPS of EUR 0.74 in the corresponding period of 2008.
15
+ model-index:
16
+ - name: ahmedrachid/FinancialBERT-Sentiment-Analysis
17
+ results:
18
+ - task:
19
+ type: text-classification
20
+ name: Text Classification
21
+ dataset:
22
+ name: financial_phrasebank
23
+ type: financial_phrasebank
24
+ config: sentences_allagree
25
+ split: train
26
+ metrics:
27
+ - type: accuracy
28
+ value: 0.9889575971731449
29
+ name: Accuracy
30
+ verified: true
31
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMyOTZhYTA3YjdjNDkwNWVjMGRlZGQxZDM1NTBmNGFkMWM0MzM2YTJiNzI4NzBjMzFiNTMwMzVkYTJmYmNlOCIsInZlcnNpb24iOjF9.9eOX4kC5HiagnTMpBp83H8ifgjzqwSa_tzLCjH8eMxRM6EKOhd9zWIYDtPWoKvNXpODjwRYLg38xKf09p6ZxCA
32
+ - type: f1
33
+ value: 0.9862110528444945
34
+ name: F1 Macro
35
+ verified: true
36
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDBlNzhjZWU0YzIwMmIxMDkxNjk4NTkwNzA0N2RlODE5ZmNjMzVlYTBkZjJlYTlmODNiODcwMTNiZGRjYjE4NSIsInZlcnNpb24iOjF9.U_E-FCEFDIvzz7C1TWKRE0e9cSPlbV1VYy2SLAc1b-V3gonR1xUMosUwr99MTxsYSBaBAk9iyACXnefK_O45BQ
37
+ - type: f1
38
+ value: 0.9889575971731449
39
+ name: F1 Micro
40
+ verified: true
41
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY0NTM2YThkY2VlOTZlOGZlZWMxMTU0NmIzNzNkNjIzMGI2NDM1Mjk2MzFiM2Y4MTQ5MWJmNzQxM2JmNjY1MiIsInZlcnNpb24iOjF9.6xsjHU05UtDn6vTo39MTu0Rle6CNf75dgoWqMOegs6WAW3QC6ndHhQPSGm1LriQ14IQ5J_JYK01yVXoRn1MjCg
42
+ - type: f1
43
+ value: 0.9889906387631547
44
+ name: F1 Weighted
45
+ verified: true
46
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFmN2YwMjU1MDlkMTVjYjc5YWQ3MmQ2M2NlMWVjNWJlNDMxZjU4NTg4MjQ2NmFhZGE4OThhZjZiNjQ5N2E2OCIsInZlcnNpb24iOjF9.jvWFrjazySS_B9KZUexiATqObR826IP8eIT1O6eEZcu8GjiOCXcuNVlSfuqLFfysDWKpZXCbazSd9saUKloFCQ
47
+ - type: precision
48
+ value: 0.9854095875205817
49
+ name: Precision Macro
50
+ verified: true
51
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhNTI0OTVhYmUxZjAxNzZkMmY4NDIwOTVlOTQ1MjA4OTZjZTNmMWZiOTg4NmFhNzY1NDViZmE3ZDFhYTZjMyIsInZlcnNpb24iOjF9.zKeviEdhTqP5Y1BmtVaBMW_3nhSd-gfXwxMVjwnaUsZNxURWUKJfCe7MACdetVtnX7Jz6ZUSybZYaZ3obUqMCw
52
+ - type: precision
53
+ value: 0.9889575971731449
54
+ name: Precision Micro
55
+ verified: true
56
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQ3ZDViNTg0YzRlZTdlMjIyOWI5YTczNjZkZDJkNTZjNTQ5ZTc3YzY0NTI1YjMzMWQ5ODUxOWU2NzhmZjA4NSIsInZlcnNpb24iOjF9.Iaaol0A48I9ioGXYj8Tl0sWDQySxRlruUL3RiAR9NXureRbFQGuJBgF9Sd0WRrRe_0MFxkaOsXgkvBTh0u1IBg
57
+ - type: precision
58
+ value: 0.9891088373207723
59
+ name: Precision Weighted
60
+ verified: true
61
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDljNGIzYzdhOGQzYjRlNDE2ZjUwY2NjNzRhYmE1NjM4YjVkNTIwYTIyMmE4ODM5MTZkNWM1YzY2ZmRkMTc2YSIsInZlcnNpb24iOjF9.-ZULRBdW0VbSr6e64WDdKW3Ny5qT38O2lH669cQSbwp30PjPPUFO4oXhDWm4QIOjI0NfOiTjrbLTVQ7gR0vABg
62
+ - type: recall
63
+ value: 0.987120462774644
64
+ name: Recall Macro
65
+ verified: true
66
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODVlYTE5NGMxMGIyM2UxN2ZhNmRiODM1ODhkZmNhNTNmMzVhNjg3M2FlYTM2NTI0MGQyN2ViM2YzODI0M2I0YyIsInZlcnNpb24iOjF9.yDZFOIzW041-s6dWxaap--K0-6Hp52hc_6rIi8_f3E-Q52WcJNLL0VHMBo0g2I3cT7UVRoIqPYoRxNgyHaZnAw
67
+ - type: recall
68
+ value: 0.9889575971731449
69
+ name: Recall Micro
70
+ verified: true
71
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmU4ZTg3MWEzNGZhMTY0MzQ1MjRmMTg1NTJmZjg0YWM3OGY4OGU5NWU0NmY0MmQ2YzZiNDYxMmFlNTNkZmUxYiIsInZlcnNpb24iOjF9.mvsikLjKldZ0SFThbAcygYEoJUNCQYE_bIbYyikMUHrSdY0BRlYsH5A32bu1BXAVMZVJVV9ebkSPmdKjZKIFAw
72
+ - type: recall
73
+ value: 0.9889575971731449
74
+ name: Recall Weighted
75
+ verified: true
76
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhjNDY2Mjk0NzQyN2NjYTIxZmI5YTE1YTBkOTkzOGI3YTlmZDA1MzgxMTY4MmY3MmRkNjI4OTg4OWNmNTI0NCIsInZlcnNpb24iOjF9.zUaL-986kOJjv_VtlJAlvuEq0AxxlZaISlsmNFgvjifiFRpfPx5_-mKLkbsFjkS2q-_MQ8jTMMpQoiTVbaJMAA
77
+ - type: loss
78
+ value: 0.05342382565140724
79
+ name: loss
80
+ verified: true
81
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTZkNzJmYWM2MzExM2YzOTUzMzJkZmIyOGNhMjNkZTU3NWRlOWEyMWE5ZGY4MDU3Yjk2MTU4NTExMTg0M2I4ZCIsInZlcnNpb24iOjF9.cwtia03w0NY4FPTj9doI3S45t50HyhjNEttRg7tcr00vA5y_6xEak7OKMXkGQZ2noribvuRyf4218STYNTHlAQ
82
  ---
83
  ### FinancialBERT for Sentiment Analysis
84