File size: 2,985 Bytes
f467091
5198f5c
 
856eccb
499e3bf
 
 
 
1f3af95
 
499e3bf
 
0688674
499e3bf
fc11dd7
499e3bf
fc11dd7
499e3bf
1e3415b
499e3bf
7458a9b
6777adb
fc11dd7
f158b54
6777adb
7b8f31a
 
499e3bf
1f3af95
 
 
 
 
 
4b8b16d
1f3af95
 
 
 
fb56a5a
d86532a
1f3af95
 
 
fb56a5a
1f3af95
 
fb56a5a
d86532a
1f3af95
 
 
336d15f
1f3af95
fb56a5a
 
d86532a
fb56a5a
 
1f3af95
336d15f
499e3bf
1f3af95
 
 
 
 
 
5a4a533
 
9d515ce
 
75e6b4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- ru
license: apache-2.0
---

# FRED-T5 1.7B (Full-scale Russian Enhanced Denoisers T5) 

Model was trained by [SberDevices](https://sberdevices.ru/).  

Architecture based on T5. 

It has 24 layers and 1536 hidden size. More details in config.json.

The model trained on a mixture of 7 denoisers like UL2 with several differences (https://arxiv.org/abs/2205.05131).

It was trained on Russian language corpus (300GB).   The dataset is the same as for ruT5 models. 

Bbpe tokenizer. 50257 + special tokens 107. Prefix tokens: '\<LM\>', '\<SC1>',.. '\<SC6>'

First half of the time model trained on the small part of all dataset (1%,3GB) and without prefixes in each task.

For RSG, we trained as described in the T5 paper. First, we trained multitask for all tasks. Then we took the best checkpoint for the task and trained it further.
RSG submit here https://russiansuperglue.com/login/submit_info/1936

Total training time was around 45 days on 112 A100 GPUs.


## Usage (HuggingFace Models Repository)

```python
import torch
from transformers import GPT2Tokenizer, T5ForConditionalGeneration 
tokenizer = GPT2Tokenizer.from_pretrained('ai-forever/FRED-T5-1.7B',eos_token='</s>')
model = T5ForConditionalGeneration.from_pretrained('ai-forever/FRED-T5-1.7B')
device='cuda'
model.to(device)

#Prefix <LM>
lm_text='<LM>Принялся Кутузов рассказывать свою историю как он сюда попал. Началось'
input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(device)
outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True)
print(tokenizer.decode(outputs[0][1:]))

# print result: с того, что он был в армии, служил в артиллерии</s>.

#Prefix <SC1>
lm_text='<SC1>Принялся Кутузов рассказывать свою историю <extra_id_0>. Началось с того, что он был в армии, служил в артиллерии.'
input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(device)
outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True)
print(tokenizer.decode(outputs[0][1:]))

#print result: '<extra_id_0>, как он воевал</s>'

# Prefix <SC5> 
lm_text='<SC5>Принялся Кутузов рассказывать свою историю <extra_id_0>. Началось с того, что он был в армии, служил в артиллерии.'
input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(device)
outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True)
tokenizer.decode(outputs[0][1:])

#print result: '<extra_id_0>, как он стал генералом</s>'

```
# Authors
+ NLP core team RnD [Telegram channel](https://t.me/nlpcoreteam):
  + Dmitry Zmitrovich 
  + Andrei Kalmykov 
  + Vitaly Kadulin 
  + Mikhail Novikov
  + Alexey Khoroshilov
 
[Salute AI Community](https://t.me/SaluteTechGroup).