--- language: - ru - en tags: - PyTorch thumbnail: "https://github.com/ai-forever/KandiSuperRes/" --- # KandiSuperRes - diffusion model for 4K super resolution [Habr Post](https://habr.com/ru/companies/sberbank/articles/775590/) | [Github](https://github.com/ai-forever/KandiSuperRes/) | [Telegram-bot](https://t.me/kandinsky21_bot) | [Technical Report](https://arxiv.org/pdf/2312.03511.pdf)| [Our text-to-image model](https://github.com/ai-forever/Kandinsky-3/tree/main) ![](title.png) ## Description KandiSuperRes is an open-source diffusion model for x4 super resolution. This model is based on the [Kandinsky 3.0](https://github.com/ai-forever/Kandinsky-3/tree/main) architecture with some modifications. For generation in 4K, the [MultiDiffusion](https://arxiv.org/pdf/2302.08113.pdf) algorithm was used, which allows to generate panoramic images. For more information: details of architecture and training, example of generations check out our [Habr post](). ## Installing To install repo first one need to create conda environment: ``` conda create -n kandisuperres -y python=3.8; source activate kandisuperres; pip install -r requirements.txt; ``` ## How to use ```python from KandiSuperRes import get_SR_pipeline from PIL import Image sr_pipe = get_SR_pipeline(device='cuda', fp16=True) lr_image = Image.open('') sr_image = sr_pipe(lr_image) ``` ## Authors + Anastasia Maltseva [Github](https://github.com/NastyaMittseva) + Vladimir Arkhipkin: [Github](https://github.com/oriBetelgeuse) + Andrey Kuznetsov: [Github](https://github.com/kuznetsoffandrey), [Blog](https://t.me/complete_ai) + Denis Dimitrov: [Github](https://github.com/denndimitrov), [Blog](https://t.me/dendi_math_ai)