Бадертдинов Ибрагим commited on
Commit
4b10cf9
·
1 Parent(s): 86db702

Upload models

Browse files
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BERT large model multitask (cased) for Sentence Embeddings in Russian language.
2
+ For better quality, use mean token embeddings.
3
+ ## Usage (HuggingFace Models Repository)
4
+ You can use the model directly from the model repository to compute sentence embeddings:
5
+ ```python
6
+ from transformers import AutoTokenizer, AutoModel
7
+ import torch
8
+ #Mean Pooling - Take attention mask into account for correct averaging
9
+ def mean_pooling(model_output, attention_mask):
10
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
11
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
12
+ sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
13
+ sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
14
+ return sum_embeddings / sum_mask
15
+ #Sentences we want sentence embeddings for
16
+ sentences = ['Привет! Как твои дела?',
17
+ 'А правда, что 42 твое любимое число?']
18
+ #Load AutoModel from huggingface model repository
19
+ tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru")
20
+ model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru")
21
+ #Tokenize sentences
22
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
23
+ #Compute token embeddings
24
+ with torch.no_grad():
25
+ model_output = model(**encoded_input)
26
+ #Perform pooling. In this case, mean pooling
27
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
28
+ ```
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/ibragim/Downloads/sbert_nlu_mltsk",
3
+ "attention_probs_dropout_prob": 0.1,
4
+ "directionality": "bidi",
5
+ "gradient_checkpointing": false,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 1024,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 4096,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 16,
15
+ "num_hidden_layers": 24,
16
+ "pad_token_id": 0,
17
+ "pooler_fc_size": 768,
18
+ "pooler_num_attention_heads": 12,
19
+ "pooler_num_fc_layers": 3,
20
+ "pooler_size_per_head": 128,
21
+ "pooler_type": "first_token_transform",
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.4.0.dev0",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 120138
27
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e6a6d0a2d2140ebe7ccda6c907b51ffb9bf47b6d57db57a99e4c0d98a292fa
3
+ size 1712498565
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e4a4603fa5d9df44e5a00c6e8cb0e721c6f92dc784b75b31148f9921bbdb271
3
+ size 1708149528
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "/Users/ibragim/Downloads/sbert_nlu_mltsk", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff