indictrans2-indic-indic-dist-320M / tokenization_indictrans.py
jaygala24's picture
Upload 7 files
7758d23 verified
raw
history blame
7.55 kB
import os
import json
from typing import Dict, List, Optional, Union, Tuple
from transformers.utils import logging
from sentencepiece import SentencePieceProcessor
from transformers.tokenization_utils import PreTrainedTokenizer
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
SUPPORTED_LANGUAGES = [
"asm_Beng",
"awa_Deva",
"ben_Beng",
"bho_Deva",
"brx_Deva",
"doi_Deva",
"eng_Latn",
"gom_Deva",
"gon_Deva",
"guj_Gujr",
"hin_Deva",
"hne_Deva",
"kan_Knda",
"kas_Arab",
"kas_Deva",
"kha_Latn",
"lus_Latn",
"mag_Deva",
"mai_Deva",
"mal_Mlym",
"mar_Deva",
"mni_Beng",
"mni_Mtei",
"npi_Deva",
"ory_Orya",
"pan_Guru",
"san_Deva",
"sat_Olck",
"snd_Arab",
"snd_Deva",
"tam_Taml",
"tel_Telu",
"urd_Arab",
"unr_Deva",
]
VOCAB_FILES_NAMES = {
"src_vocab_fp": "dict.SRC.json",
"tgt_vocab_fp": "dict.TGT.json",
"src_spm_fp": "model.SRC",
"tgt_spm_fp": "model.TGT",
}
class IndicTransTokenizer(PreTrainedTokenizer):
_added_tokens_encoder = {}
_added_tokens_decoder = {}
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
src_vocab_fp=None,
tgt_vocab_fp=None,
src_spm_fp=None,
tgt_spm_fp=None,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
do_lower_case=False,
**kwargs
):
self.src = True
self.src_vocab_fp = src_vocab_fp
self.tgt_vocab_fp = tgt_vocab_fp
self.src_spm_fp = src_spm_fp
self.tgt_spm_fp = tgt_spm_fp
self.unk_token = unk_token
self.pad_token = pad_token
self.eos_token = eos_token
self.bos_token = bos_token
self.encoder = self._load_json(self.src_vocab_fp)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
self.encoder_rev = {v: k for k, v in self.encoder.items()}
self.decoder = self._load_json(self.tgt_vocab_fp)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
self.decoder_rev = {v: k for k, v in self.decoder.items()}
# load SentencePiece model for pre-processing
self.src_spm = self._load_spm(self.src_spm_fp)
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
self.current_spm = self.src_spm
self.current_encoder = self.encoder
self.current_encoder_rev = self.encoder_rev
self.unk_token_id = self.encoder[self.unk_token]
self.pad_token_id = self.encoder[self.pad_token]
self.eos_token_id = self.encoder[self.eos_token]
self.bos_token_id = self.encoder[self.bos_token]
super().__init__(
src_vocab_file=self.src_vocab_fp,
tgt_vocab_file=self.src_vocab_fp,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
def _switch_to_input_mode(self):
self.src = True
self.padding_side = "left"
self.current_spm = self.src_spm
self.current_encoder = self.encoder
self.current_encoder_rev = self.encoder_rev
def _switch_to_target_mode(self):
self.src = False
self.padding_side = "right"
self.current_spm = self.tgt_spm
self.current_encoder = self.decoder
self.current_encoder_rev = self.decoder_rev
def _load_spm(self, path: str) -> SentencePieceProcessor:
return SentencePieceProcessor(model_file=path)
def _save_json(self, data, path: str) -> None:
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
def _load_json(self, path: str) -> Union[Dict, List]:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
@property
def src_vocab_size(self) -> int:
return len(self.encoder)
@property
def tgt_vocab_size(self) -> int:
return len(self.decoder)
def get_src_vocab(self) -> Dict[str, int]:
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self) -> Dict[str, int]:
return dict(self.decoder, **self.added_tokens_decoder)
# hack override
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
# hack override
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def _convert_token_to_id(self, token: str) -> int:
"""Converts an token (str) into an index (integer) using the source/target vocabulary map."""
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) into a token (str) using the source/target vocabulary map."""
return self.current_encoder_rev.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses sentencepiece model for detokenization"""
pad_tokens = [token for token in tokens if token == self.pad_token]
tokens = [token for token in tokens if token != self.pad_token]
if self.src:
return (
" ".join(pad_tokens)
+ " "
+ " ".join(tokens[:2])
+ " "
+ "".join(tokens[2:]).replace(SPIECE_UNDERLINE, " ").strip()
)
return (
"".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ " "
+ " ".join(pad_tokens)
)
def _tokenize(self, text) -> List[str]:
if self.src:
tokens = text.split(" ")
tags = tokens[:2]
text = " ".join(tokens[2:])
tokens = self.current_spm.EncodeAsPieces(text)
return tags + tokens
else:
return self.current_spm.EncodeAsPieces(text)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
src_spm_fp = os.path.join(save_directory, "model.SRC")
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
self._save_json(self.encoder, src_vocab_fp)
self._save_json(self.decoder, tgt_vocab_fp)
with open(src_spm_fp, 'wb') as f:
f.write(self.src_spm.serialized_model_proto())
with open(tgt_spm_fp, 'wb') as f:
f.write(self.tgt_spm.serialized_model_proto())
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp