readme and demo
Browse files- AutoGPTFlow.py +115 -2
- README.md +158 -12
- __init__.py +3 -3
- AutoGPT.yaml → demo.yaml +7 -0
- pip_requirements.txt +8 -1
- run.py +16 -11
AutoGPTFlow.py
CHANGED
@@ -12,7 +12,67 @@ from flow_modules.aiflows.ControllerExecutorFlowModule import ControllerAtomicFl
|
|
12 |
from flow_modules.aiflows.VectorStoreFlowModule import ChromaDBFlow
|
13 |
|
14 |
class AutoGPTFlow(CircularFlow):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def _on_reach_max_round(self):
|
|
|
16 |
self._state_update_dict({
|
17 |
"answer": "The maximum amount of rounds was reached before the model found an answer.",
|
18 |
"status": "unfinished"
|
@@ -20,6 +80,13 @@ class AutoGPTFlow(CircularFlow):
|
|
20 |
|
21 |
@staticmethod
|
22 |
def _get_memory_key(flow_state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
goal = flow_state.get("goal")
|
24 |
last_command = flow_state.get("command")
|
25 |
last_command_args = flow_state.get("command_args")
|
@@ -53,7 +120,16 @@ class AutoGPTFlow(CircularFlow):
|
|
53 |
|
54 |
@CircularFlow.input_msg_payload_builder
|
55 |
def prepare_memory_read_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
|
56 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
query = self._get_memory_key(flow_state)
|
58 |
|
59 |
return {
|
@@ -63,12 +139,30 @@ class AutoGPTFlow(CircularFlow):
|
|
63 |
|
64 |
@CircularFlow.output_msg_payload_processor
|
65 |
def prepare_memory_read_output(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
retrieved_memories = output_payload["retrieved"][0][1:]
|
67 |
return {"memory": "\n".join(retrieved_memories)}
|
68 |
|
69 |
@CircularFlow.input_msg_payload_builder
|
70 |
def prepare_memory_write_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
|
71 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
query = self._get_memory_key(flow_state)
|
73 |
|
74 |
return {
|
@@ -79,6 +173,15 @@ class AutoGPTFlow(CircularFlow):
|
|
79 |
@CircularFlow.output_msg_payload_processor
|
80 |
def detect_finish_or_continue(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
|
81 |
str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
command = output_payload["command"]
|
83 |
if command == "finish":
|
84 |
return {
|
@@ -92,6 +195,16 @@ class AutoGPTFlow(CircularFlow):
|
|
92 |
@CircularFlow.output_msg_payload_processor
|
93 |
def detect_finish_in_human_input(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
|
94 |
str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
human_feedback = output_payload["human_input"]
|
96 |
if human_feedback.strip().lower() == "q":
|
97 |
return {
|
|
|
12 |
from flow_modules.aiflows.VectorStoreFlowModule import ChromaDBFlow
|
13 |
|
14 |
class AutoGPTFlow(CircularFlow):
|
15 |
+
""" This class implements a (very basic) AutoGPT flow. It is a flow that consists of multiple sub-flows that are executed circularly. It Contains the following subflows:
|
16 |
+
|
17 |
+
- A Controller Flow: A Flow that controls which subflow of the Executor Flow to execute next.
|
18 |
+
- A Memory Flow: A Flow used to save and retrieve messages or memories which might be useful for the Controller Flow.
|
19 |
+
- A HumanFeedback Flow: A flow use to get feedback from the user/human.
|
20 |
+
- A Executor Flow: A Flow that executes commands generated by the Controller Flow. Typically it's a branching flow (see BranchingFlow) and the commands are which branch to execute next.
|
21 |
+
|
22 |
+
An illustration of the flow is as follows:
|
23 |
+
|
24 |
+
| -------> Memory Flow -------> Controller Flow ------->|
|
25 |
+
^ |
|
26 |
+
| |
|
27 |
+
| v
|
28 |
+
| <----- HumanFeedback Flow <------- Executor Flow <----|
|
29 |
+
|
30 |
+
*Configuration Parameters*:
|
31 |
+
|
32 |
+
- `name` (str): The name of the flow. Default is "AutoGPTFlow".
|
33 |
+
- `description` (str): A description of the flow. Default is "An example implementation of AutoGPT with Flows."
|
34 |
+
- `max_rounds` (int): The maximum number of rounds the circular flow can run for. Default is 30.
|
35 |
+
- `early_exit_key` (str): The key that is used to terminate the flow early. Default is "EARLY_EXIT".
|
36 |
+
- `subflows_config` (Dict[str,Any]): A dictionary of subflows configurations. Default:
|
37 |
+
- `Controller` (Dict[str,Any]): The configuration of the Controller Flow. By default the controller flow is a ControllerAtomicFlow (see ControllerExecutorFlowModule). It's default values are
|
38 |
+
defined in ControllerAtomicFlow.yaml of the ControllerExecutorFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
39 |
+
- `finish` (Dict[str,Any]): The configuration of the finish command (used to terminate the flow early when the controller has accomplished its goal).
|
40 |
+
- `description` (str): The description of the command. Default is "The finish command is used to terminate the flow early when the controller has accomplished its goal."
|
41 |
+
- `input_args` (List[str]): The list of expected keys to run the finish command. Default is ["answer"].
|
42 |
+
- `human_message_prompt_template`(Dict[str,Any]): The prompt template used to generate the message that is shown to the user/human when the finish command is executed. Default is:
|
43 |
+
- `template` (str): The template of the humand message prompt (see AutoGPTFlow.yaml for default template)
|
44 |
+
- `input_variables` (List[str]): The list of variables to be included in the template. Default is ["observation", "human_feedback", "memory"].
|
45 |
+
- `ìnput_interface_initialized` (List[str]): The input interface that Controller Flow expects except for the first time in the flow. Default is ["observation", "human_feedback", "memory"].
|
46 |
+
- `Executor` (Dict[str,Any]): The configuration of the Executor Flow. By default the executor flow is a Branching Flow (see BranchingFlow). It's default values are the default values of the BranchingFlow. Fields to define:
|
47 |
+
- `subflows_config` (Dict[str,Any]): A Dictionary of subflows configurations.The keys are the names of the subflows and the values are the configurations of the subflows. Each subflow is a branch of the branching flow.
|
48 |
+
- `HumanFeedback` (Dict[str,Any]): The configuration of the HumanFeedback Flow. By default the human feedback flow is a HumanStandardInputFlow (see HumanStandardInputFlowModule ).
|
49 |
+
It's default values are specified in the REAMDE.md of HumanStandardInputFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
50 |
+
- `request_multi_line_input_flag` (bool): Flag to request multi-line input. Default is False.
|
51 |
+
- `query_message_prompt_template` (Dict[str,Any]): The prompt template presented to the user/human to request input. Default is:
|
52 |
+
- `template` (str): The template of the query message prompt (see AutoGPTFlow.yaml for default template)
|
53 |
+
- `input_variables` (List[str]): The list of variables to be included in the template. Default is ["goal","command","command_args",observation"]
|
54 |
+
- input_interface_initialized (List[str]): The input interface that HumanFeeback Flow expects except for the first time in the flow. Default is ["goal","command","command_args",observation"]
|
55 |
+
- `Memory` (Dict[str,Any]): The configuration of the Memory Flow. By default the memory flow is a ChromaDBFlow (see VectorStoreFlowModule). It's default values are defined in ChromaDBFlow.yaml of the VectorStoreFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
56 |
+
- `n_results`: The number of results to retrieve from the memory. Default is 2.
|
57 |
+
- `topology` (List[Dict[str,Any]]): The topology of the flow which is "circular". By default, the topology is the one shown in the illustration above (the topology is also described in AutoGPTFlow.yaml).
|
58 |
+
|
59 |
+
|
60 |
+
*Input Interface*:
|
61 |
+
|
62 |
+
- `goal` (str): The goal of the flow.
|
63 |
+
|
64 |
+
*Output Interface*:
|
65 |
+
|
66 |
+
- `answer` (str): The answer of the flow.
|
67 |
+
- `status` (str): The status of the flow. It can be "finished" or "unfinished".
|
68 |
+
|
69 |
+
:param flow_config: The configuration of the flow. Contains the parameters described above and the parameters required by the parent class (CircularFlow).
|
70 |
+
:type flow_config: Dict[str,Any]
|
71 |
+
:param subflows: A list of subflows constituating the circular flow. Required when instantiating the subflow programmatically (it replaces subflows_config from flow_config).
|
72 |
+
:type subflows: List[Flow]
|
73 |
+
"""
|
74 |
def _on_reach_max_round(self):
|
75 |
+
""" This method is called when the flow reaches the max_rounds."""
|
76 |
self._state_update_dict({
|
77 |
"answer": "The maximum amount of rounds was reached before the model found an answer.",
|
78 |
"status": "unfinished"
|
|
|
80 |
|
81 |
@staticmethod
|
82 |
def _get_memory_key(flow_state):
|
83 |
+
""" This method returns the memory key that is used to retrieve memories from the ChromaDB model.
|
84 |
+
|
85 |
+
:param flow_state: The state of the flow
|
86 |
+
:type flow_state: Dict[str, Any]
|
87 |
+
:return: The current context
|
88 |
+
:rtype: str
|
89 |
+
"""
|
90 |
goal = flow_state.get("goal")
|
91 |
last_command = flow_state.get("command")
|
92 |
last_command_args = flow_state.get("command_args")
|
|
|
120 |
|
121 |
@CircularFlow.input_msg_payload_builder
|
122 |
def prepare_memory_read_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
|
123 |
+
""" This method prepares the input for the Memory Flow. It is called before the Memory Flow is called.
|
124 |
+
A (very) basic example implementation of how the memory retrieval could be constructed.
|
125 |
+
|
126 |
+
:param flow_state: The state of the flow
|
127 |
+
:type flow_state: Dict[str, Any]
|
128 |
+
:param dst_flow: The destination flow
|
129 |
+
:type dst_flow: Flow
|
130 |
+
:return: The input message for the Memory Flow
|
131 |
+
:rtype: Dict[str, Any]
|
132 |
+
"""
|
133 |
query = self._get_memory_key(flow_state)
|
134 |
|
135 |
return {
|
|
|
139 |
|
140 |
@CircularFlow.output_msg_payload_processor
|
141 |
def prepare_memory_read_output(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow):
|
142 |
+
""" This method processes the output of the Memory Flow. It is called after the Memory Flow is called.
|
143 |
+
|
144 |
+
:param output_payload: The output payload of the Memory Flow
|
145 |
+
:type output_payload: Dict[str, Any]
|
146 |
+
:param src_flow: The source flow
|
147 |
+
:type src_flow: Flow
|
148 |
+
:return: The processed output payload
|
149 |
+
:rtype: Dict[str, Any]
|
150 |
+
"""
|
151 |
retrieved_memories = output_payload["retrieved"][0][1:]
|
152 |
return {"memory": "\n".join(retrieved_memories)}
|
153 |
|
154 |
@CircularFlow.input_msg_payload_builder
|
155 |
def prepare_memory_write_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
|
156 |
+
""" This method prepares the input for the Memory Flow. It is called before the Memory Flow is called.
|
157 |
+
A (very) basic example implementation of how the memory population could be constructed.
|
158 |
+
|
159 |
+
:param flow_state: The state of the flow
|
160 |
+
:type flow_state: Dict[str, Any]
|
161 |
+
:param dst_flow: The destination flow
|
162 |
+
:type dst_flow: Flow
|
163 |
+
:return: The input message to write the Memory Flow
|
164 |
+
:rtype: Dict[str, Any]
|
165 |
+
"""""
|
166 |
query = self._get_memory_key(flow_state)
|
167 |
|
168 |
return {
|
|
|
173 |
@CircularFlow.output_msg_payload_processor
|
174 |
def detect_finish_or_continue(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
|
175 |
str, Any]:
|
176 |
+
""" This method detects whether the Controller flow has generated a "finish" command or not to terminate the flow. . It is called after the Controller Flow is called.
|
177 |
+
|
178 |
+
:param output_payload: The output payload of the Controller Flow
|
179 |
+
:type output_payload: Dict[str, Any]
|
180 |
+
:param src_flow: The source flow
|
181 |
+
:type src_flow: Flow
|
182 |
+
:return: The processed output payload
|
183 |
+
:rtype: Dict[str, Any]
|
184 |
+
"""
|
185 |
command = output_payload["command"]
|
186 |
if command == "finish":
|
187 |
return {
|
|
|
195 |
@CircularFlow.output_msg_payload_processor
|
196 |
def detect_finish_in_human_input(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
|
197 |
str, Any]:
|
198 |
+
""" This method detects whether the HumanFeedback (the human/user) flow has generated a "finish" command or not to terminate the flow. It is called after the HumanFeedback Flow is called.
|
199 |
+
|
200 |
+
:param output_payload: The output payload of the HumanFeedback Flow
|
201 |
+
:type output_payload: Dict[str, Any]
|
202 |
+
:param src_flow: The source flow
|
203 |
+
:type src_flow: Flow
|
204 |
+
:return: The processed output payload
|
205 |
+
:rtype: Dict[str, Any]
|
206 |
+
"""
|
207 |
+
|
208 |
human_feedback = output_payload["human_input"]
|
209 |
if human_feedback.strip().lower() == "q":
|
210 |
return {
|
README.md
CHANGED
@@ -1,26 +1,172 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
-
ToDo:
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
(
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
(Note that the interface might depend on the state of the Flow.)
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
4 |
|
5 |
+
# Table of Contents
|
6 |
|
7 |
+
* [AutoGPTFlow](#AutoGPTFlow)
|
8 |
+
* [AutoGPTFlow](#AutoGPTFlow.AutoGPTFlow)
|
9 |
+
* [prepare\_memory\_read\_input](#AutoGPTFlow.AutoGPTFlow.prepare_memory_read_input)
|
10 |
+
* [prepare\_memory\_read\_output](#AutoGPTFlow.AutoGPTFlow.prepare_memory_read_output)
|
11 |
+
* [detect\_finish\_or\_continue](#AutoGPTFlow.AutoGPTFlow.detect_finish_or_continue)
|
12 |
+
* [detect\_finish\_in\_human\_input](#AutoGPTFlow.AutoGPTFlow.detect_finish_in_human_input)
|
13 |
|
14 |
+
<a id="AutoGPTFlow"></a>
|
15 |
|
16 |
+
# AutoGPTFlow
|
17 |
|
18 |
+
<a id="AutoGPTFlow.AutoGPTFlow"></a>
|
19 |
|
20 |
+
## AutoGPTFlow Objects
|
21 |
|
22 |
+
```python
|
23 |
+
class AutoGPTFlow(CircularFlow)
|
24 |
+
```
|
25 |
|
26 |
+
This class implements a (very basic) AutoGPT flow. It is a flow that consists of multiple sub-flows that are executed circularly. It Contains the following subflows:
|
27 |
|
28 |
+
- A Controller Flow: A Flow that controls which subflow of the Executor Flow to execute next.
|
29 |
+
- A Memory Flow: A Flow used to save and retrieve messages or memories which might be useful for the Controller Flow.
|
30 |
+
- A HumanFeedback Flow: A flow use to get feedback from the user/human.
|
31 |
+
- A Executor Flow: A Flow that executes commands generated by the Controller Flow. Typically it's a branching flow (see BranchingFlow) and the commands are which branch to execute next.
|
32 |
|
33 |
+
An illustration of the flow is as follows:
|
34 |
+
|
35 |
+
| -------> Memory Flow -------> Controller Flow ------->|
|
36 |
+
^ |
|
37 |
+
| |
|
38 |
+
| v
|
39 |
+
| <----- HumanFeedback Flow <------- Executor Flow <----|
|
40 |
+
|
41 |
+
*Configuration Parameters*:
|
42 |
+
|
43 |
+
- `name` (str): The name of the flow. Default is "AutoGPTFlow".
|
44 |
+
- `description` (str): A description of the flow. Default is "An example implementation of AutoGPT with Flows."
|
45 |
+
- `max_rounds` (int): The maximum number of rounds the circular flow can run for. Default is 30.
|
46 |
+
- `early_exit_key` (str): The key that is used to terminate the flow early. Default is "EARLY_EXIT".
|
47 |
+
- `subflows_config` (Dict[str,Any]): A dictionary of subflows configurations. Default:
|
48 |
+
- `Controller` (Dict[str,Any]): The configuration of the Controller Flow. By default the controller flow is a ControllerAtomicFlow (see ControllerExecutorFlowModule). It's default values are
|
49 |
+
defined in ControllerAtomicFlow.yaml of the ControllerExecutorFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
50 |
+
- `finish` (Dict[str,Any]): The configuration of the finish command (used to terminate the flow early when the controller has accomplished its goal).
|
51 |
+
- `description` (str): The description of the command. Default is "The finish command is used to terminate the flow early when the controller has accomplished its goal."
|
52 |
+
- `input_args` (List[str]): The list of expected keys to run the finish command. Default is ["answer"].
|
53 |
+
- `human_message_prompt_template`(Dict[str,Any]): The prompt template used to generate the message that is shown to the user/human when the finish command is executed. Default is:
|
54 |
+
- `template` (str): The template of the humand message prompt (see AutoGPTFlow.yaml for default template)
|
55 |
+
- `input_variables` (List[str]): The list of variables to be included in the template. Default is ["observation", "human_feedback", "memory"].
|
56 |
+
- `ìnput_interface_initialized` (List[str]): The input interface that Controller Flow expects except for the first time in the flow. Default is ["observation", "human_feedback", "memory"].
|
57 |
+
- `Executor` (Dict[str,Any]): The configuration of the Executor Flow. By default the executor flow is a Branching Flow (see BranchingFlow). It's default values are the default values of the BranchingFlow. Fields to define:
|
58 |
+
- `subflows_config` (Dict[str,Any]): A Dictionary of subflows configurations.The keys are the names of the subflows and the values are the configurations of the subflows. Each subflow is a branch of the branching flow.
|
59 |
+
- `HumanFeedback` (Dict[str,Any]): The configuration of the HumanFeedback Flow. By default the human feedback flow is a HumanStandardInputFlow (see HumanStandardInputFlowModule ).
|
60 |
+
It's default values are specified in the REAMDE.md of HumanStandardInputFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
61 |
+
- `request_multi_line_input_flag` (bool): Flag to request multi-line input. Default is False.
|
62 |
+
- `query_message_prompt_template` (Dict[str,Any]): The prompt template presented to the user/human to request input. Default is:
|
63 |
+
- `template` (str): The template of the query message prompt (see AutoGPTFlow.yaml for default template)
|
64 |
+
- `input_variables` (List[str]): The list of variables to be included in the template. Default is ["goal","command","command_args",observation"]
|
65 |
+
- input_interface_initialized (List[str]): The input interface that HumanFeeback Flow expects except for the first time in the flow. Default is ["goal","command","command_args",observation"]
|
66 |
+
- `Memory` (Dict[str,Any]): The configuration of the Memory Flow. By default the memory flow is a ChromaDBFlow (see VectorStoreFlowModule). It's default values are defined in ChromaDBFlow.yaml of the VectorStoreFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
|
67 |
+
- `n_results`: The number of results to retrieve from the memory. Default is 2.
|
68 |
+
- `topology` (List[Dict[str,Any]]): The topology of the flow which is "circular". By default, the topology is the one shown in the illustration above (the topology is also described in AutoGPTFlow.yaml).
|
69 |
+
|
70 |
+
|
71 |
+
*Input Interface*:
|
72 |
+
|
73 |
+
- `goal` (str): The goal of the flow.
|
74 |
+
|
75 |
+
*Output Interface*:
|
76 |
+
|
77 |
+
- `answer` (str): The answer of the flow.
|
78 |
+
- `status` (str): The status of the flow. It can be "finished" or "unfinished".
|
79 |
+
|
80 |
+
**Arguments**:
|
81 |
+
|
82 |
+
- `flow_config` (`Dict[str,Any]`): The configuration of the flow. Contains the parameters described above and the parameters required by the parent class (CircularFlow).
|
83 |
+
- `subflows` (`List[Flow]`): A list of subflows constituating the circular flow. Required when instantiating the subflow programmatically (it replaces subflows_config from flow_config).
|
84 |
+
|
85 |
+
<a id="AutoGPTFlow.AutoGPTFlow.prepare_memory_read_input"></a>
|
86 |
+
|
87 |
+
#### prepare\_memory\_read\_input
|
88 |
+
|
89 |
+
```python
|
90 |
+
@CircularFlow.input_msg_payload_builder
|
91 |
+
def prepare_memory_read_input(flow_state: Dict[str, Any],
|
92 |
+
dst_flow: ChromaDBFlow) -> Dict[str, Any]
|
93 |
+
```
|
94 |
+
|
95 |
+
This method prepares the input for the Memory Flow. It is called before the Memory Flow is called.
|
96 |
+
|
97 |
+
A (very) basic example implementation of how the memory retrieval could be constructed.
|
98 |
+
|
99 |
+
**Arguments**:
|
100 |
+
|
101 |
+
- `flow_state` (`Dict[str, Any]`): The state of the flow
|
102 |
+
- `dst_flow` (`Flow`): The destination flow
|
103 |
+
|
104 |
+
**Returns**:
|
105 |
+
|
106 |
+
`Dict[str, Any]`: The input message for the Memory Flow
|
107 |
+
|
108 |
+
<a id="AutoGPTFlow.AutoGPTFlow.prepare_memory_read_output"></a>
|
109 |
+
|
110 |
+
#### prepare\_memory\_read\_output
|
111 |
+
|
112 |
+
```python
|
113 |
+
@CircularFlow.output_msg_payload_processor
|
114 |
+
def prepare_memory_read_output(output_payload: Dict[str, Any],
|
115 |
+
src_flow: ControllerAtomicFlow)
|
116 |
+
```
|
117 |
+
|
118 |
+
This method processes the output of the Memory Flow. It is called after the Memory Flow is called.
|
119 |
+
|
120 |
+
**Arguments**:
|
121 |
+
|
122 |
+
- `output_payload` (`Dict[str, Any]`): The output payload of the Memory Flow
|
123 |
+
- `src_flow` (`Flow`): The source flow
|
124 |
+
|
125 |
+
**Returns**:
|
126 |
+
|
127 |
+
`Dict[str, Any]`: The processed output payload
|
128 |
+
|
129 |
+
<a id="AutoGPTFlow.AutoGPTFlow.detect_finish_or_continue"></a>
|
130 |
+
|
131 |
+
#### detect\_finish\_or\_continue
|
132 |
+
|
133 |
+
```python
|
134 |
+
@CircularFlow.output_msg_payload_processor
|
135 |
+
def detect_finish_or_continue(
|
136 |
+
output_payload: Dict[str, Any],
|
137 |
+
src_flow: ControllerAtomicFlow) -> Dict[str, Any]
|
138 |
+
```
|
139 |
+
|
140 |
+
This method detects whether the Controller flow has generated a "finish" command or not to terminate the flow. . It is called after the Controller Flow is called.
|
141 |
+
|
142 |
+
**Arguments**:
|
143 |
+
|
144 |
+
- `output_payload` (`Dict[str, Any]`): The output payload of the Controller Flow
|
145 |
+
- `src_flow` (`Flow`): The source flow
|
146 |
+
|
147 |
+
**Returns**:
|
148 |
+
|
149 |
+
`Dict[str, Any]`: The processed output payload
|
150 |
+
|
151 |
+
<a id="AutoGPTFlow.AutoGPTFlow.detect_finish_in_human_input"></a>
|
152 |
+
|
153 |
+
#### detect\_finish\_in\_human\_input
|
154 |
+
|
155 |
+
```python
|
156 |
+
@CircularFlow.output_msg_payload_processor
|
157 |
+
def detect_finish_in_human_input(
|
158 |
+
output_payload: Dict[str, Any],
|
159 |
+
src_flow: ControllerAtomicFlow) -> Dict[str, Any]
|
160 |
+
```
|
161 |
+
|
162 |
+
This method detects whether the HumanFeedback (the human/user) flow has generated a "finish" command or not to terminate the flow. It is called after the HumanFeedback Flow is called.
|
163 |
+
|
164 |
+
**Arguments**:
|
165 |
+
|
166 |
+
- `output_payload` (`Dict[str, Any]`): The output payload of the HumanFeedback Flow
|
167 |
+
- `src_flow` (`Flow`): The source flow
|
168 |
+
|
169 |
+
**Returns**:
|
170 |
+
|
171 |
+
`Dict[str, Any]`: The processed output payload
|
172 |
|
|
__init__.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
# ~~~ Specify the dependencies ~~~
|
2 |
dependencies = [
|
3 |
{"url": "aiflows/ControllerExecutorFlowModule",
|
4 |
-
"revision": "
|
5 |
{"url": "aiflows/HumanStandardInputFlowModule",
|
6 |
-
"revision": "
|
7 |
{"url": "aiflows/VectorStoreFlowModule",
|
8 |
-
"revision": "
|
9 |
]
|
10 |
from flows import flow_verse
|
11 |
|
|
|
1 |
# ~~~ Specify the dependencies ~~~
|
2 |
dependencies = [
|
3 |
{"url": "aiflows/ControllerExecutorFlowModule",
|
4 |
+
"revision": "09cda9615e5c48ae18e2c1244519ed7321145187"},
|
5 |
{"url": "aiflows/HumanStandardInputFlowModule",
|
6 |
+
"revision": "5683a922372c5fa90be9f6447d6662d8d80341fc"},
|
7 |
{"url": "aiflows/VectorStoreFlowModule",
|
8 |
+
"revision": "692f5d1b55936d813d4f41e8b0ec11754c7da9ac"},
|
9 |
]
|
10 |
from flows import flow_verse
|
11 |
|
AutoGPT.yaml → demo.yaml
RENAMED
@@ -16,6 +16,8 @@ flow:
|
|
16 |
finish:
|
17 |
description: "Signal that the objective has been satisfied, and returns the answer to the user."
|
18 |
input_args: [ "answer" ]
|
|
|
|
|
19 |
human_message_prompt_template:
|
20 |
template: |2-
|
21 |
Here is the response to your last action:
|
@@ -38,3 +40,8 @@ flow:
|
|
38 |
_target_: aiflows.LCToolFlowModule.LCToolFlow.instantiate_from_default_config
|
39 |
backend:
|
40 |
_target_: langchain.tools.DuckDuckGoSearchRun
|
|
|
|
|
|
|
|
|
|
|
|
16 |
finish:
|
17 |
description: "Signal that the objective has been satisfied, and returns the answer to the user."
|
18 |
input_args: [ "answer" ]
|
19 |
+
backend:
|
20 |
+
api_infos: ???
|
21 |
human_message_prompt_template:
|
22 |
template: |2-
|
23 |
Here is the response to your last action:
|
|
|
40 |
_target_: aiflows.LCToolFlowModule.LCToolFlow.instantiate_from_default_config
|
41 |
backend:
|
42 |
_target_: langchain.tools.DuckDuckGoSearchRun
|
43 |
+
|
44 |
+
Memory:
|
45 |
+
backend:
|
46 |
+
api_infos: ???
|
47 |
+
|
pip_requirements.txt
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LCToolFLowModule dependency. Needed if you want to run the demo
|
2 |
+
duckduckgo-search==3.9.6
|
3 |
+
# ControllerExecutorFlowModule dependency. Needed if you want to run the demo
|
4 |
+
wikipedia==1.4.0
|
5 |
+
# VectorStore FlowModule dependencies. Needed if you want to run the demo
|
6 |
+
langchain==0.0.336
|
7 |
+
chromadb==0.3.29
|
8 |
+
faiss-cpu==1.7.4
|
run.py
CHANGED
@@ -3,7 +3,8 @@ import os
|
|
3 |
import hydra
|
4 |
|
5 |
import flows
|
6 |
-
from flows.flow_launchers import FlowLauncher
|
|
|
7 |
from flows.utils.general_helpers import read_yaml_file
|
8 |
|
9 |
from flows import logging
|
@@ -16,33 +17,38 @@ logging.set_verbosity_debug()
|
|
16 |
|
17 |
dependencies = [
|
18 |
{"url": "aiflows/AutoGPTFlowModule", "revision": os.getcwd()},
|
19 |
-
{"url": "aiflows/LCToolFlowModule", "revision": "
|
20 |
]
|
21 |
from flows import flow_verse
|
22 |
-
flow_verse.sync_dependencies(dependencies)
|
23 |
|
|
|
24 |
if __name__ == "__main__":
|
25 |
# ~~~ Set the API information ~~~
|
26 |
# OpenAI backend
|
27 |
-
|
|
|
28 |
# Azure backend
|
29 |
-
api_information = ApiInfo("azure",
|
|
|
|
|
|
|
30 |
|
31 |
root_dir = "."
|
32 |
-
cfg_path = os.path.join(root_dir, "
|
33 |
cfg = read_yaml_file(cfg_path)
|
34 |
-
|
|
|
35 |
# ~~~ Instantiate the Flow ~~~
|
36 |
flow_with_interfaces = {
|
37 |
"flow": hydra.utils.instantiate(cfg['flow'], _recursive_=False, _convert_="partial"),
|
38 |
"input_interface": (
|
39 |
None
|
40 |
-
if
|
41 |
else hydra.utils.instantiate(cfg['input_interface'], _recursive_=False)
|
42 |
),
|
43 |
"output_interface": (
|
44 |
None
|
45 |
-
if
|
46 |
else hydra.utils.instantiate(cfg['output_interface'], _recursive_=False)
|
47 |
),
|
48 |
}
|
@@ -50,7 +56,7 @@ if __name__ == "__main__":
|
|
50 |
# ~~~ Get the data ~~~
|
51 |
# data = {"id": 0, "goal": "Answer the following question: What is the population of Canada?"} # Uses wikipedia
|
52 |
# data = {"id": 0, "goal": "Answer the following question: Who was the NBA champion in 2023?"} # Uses duckduckgo
|
53 |
-
data = {"id": 0, "goal": "Answer the following question: What is the date of birth of Michael Jordan?"}
|
54 |
# At first, we retrieve information about Michael Jordan the basketball player
|
55 |
# If we provide feedback, only in the first round, that we are not interested in the basketball player,
|
56 |
# but the statistician, and skip the feedback in the next rounds, we get the correct answer
|
@@ -63,7 +69,6 @@ if __name__ == "__main__":
|
|
63 |
flow_with_interfaces=flow_with_interfaces,
|
64 |
data=data,
|
65 |
path_to_output_file=path_to_output_file,
|
66 |
-
api_information=api_information,
|
67 |
)
|
68 |
|
69 |
# ~~~ Print the output ~~~
|
|
|
3 |
import hydra
|
4 |
|
5 |
import flows
|
6 |
+
from flows.flow_launchers import FlowLauncher
|
7 |
+
from flows.backends.api_info import ApiInfo
|
8 |
from flows.utils.general_helpers import read_yaml_file
|
9 |
|
10 |
from flows import logging
|
|
|
17 |
|
18 |
dependencies = [
|
19 |
{"url": "aiflows/AutoGPTFlowModule", "revision": os.getcwd()},
|
20 |
+
{"url": "aiflows/LCToolFlowModule", "revision": "f1020b23fe2a1ab6157c3faaf5b91b5cdaf02c1b"},
|
21 |
]
|
22 |
from flows import flow_verse
|
|
|
23 |
|
24 |
+
flow_verse.sync_dependencies(dependencies)
|
25 |
if __name__ == "__main__":
|
26 |
# ~~~ Set the API information ~~~
|
27 |
# OpenAI backend
|
28 |
+
api_information = [ApiInfo(backend_used="openai",
|
29 |
+
api_key = os.getenv("OPENAI_API_KEY"))]
|
30 |
# Azure backend
|
31 |
+
# api_information = ApiInfo(backend_used = "azure",
|
32 |
+
# api_base = os.getenv("AZURE_API_BASE"),
|
33 |
+
# api_key = os.getenv("AZURE_OPENAI_KEY"),
|
34 |
+
# api_version = os.getenv("AZURE_API_VERSION") )
|
35 |
|
36 |
root_dir = "."
|
37 |
+
cfg_path = os.path.join(root_dir, "demo.yaml")
|
38 |
cfg = read_yaml_file(cfg_path)
|
39 |
+
cfg["flow"]["subflows_config"]["Controller"]["backend"]["api_infos"] = api_information
|
40 |
+
cfg["flow"]["subflows_config"]["Memory"]["backend"]["api_infos"] = api_information
|
41 |
# ~~~ Instantiate the Flow ~~~
|
42 |
flow_with_interfaces = {
|
43 |
"flow": hydra.utils.instantiate(cfg['flow'], _recursive_=False, _convert_="partial"),
|
44 |
"input_interface": (
|
45 |
None
|
46 |
+
if cfg.get( "input_interface", None) is None
|
47 |
else hydra.utils.instantiate(cfg['input_interface'], _recursive_=False)
|
48 |
),
|
49 |
"output_interface": (
|
50 |
None
|
51 |
+
if cfg.get( "output_interface", None) is None
|
52 |
else hydra.utils.instantiate(cfg['output_interface'], _recursive_=False)
|
53 |
),
|
54 |
}
|
|
|
56 |
# ~~~ Get the data ~~~
|
57 |
# data = {"id": 0, "goal": "Answer the following question: What is the population of Canada?"} # Uses wikipedia
|
58 |
# data = {"id": 0, "goal": "Answer the following question: Who was the NBA champion in 2023?"} # Uses duckduckgo
|
59 |
+
data = {"id": 0, "goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?"}
|
60 |
# At first, we retrieve information about Michael Jordan the basketball player
|
61 |
# If we provide feedback, only in the first round, that we are not interested in the basketball player,
|
62 |
# but the statistician, and skip the feedback in the next rounds, we get the correct answer
|
|
|
69 |
flow_with_interfaces=flow_with_interfaces,
|
70 |
data=data,
|
71 |
path_to_output_file=path_to_output_file,
|
|
|
72 |
)
|
73 |
|
74 |
# ~~~ Print the output ~~~
|