import os import hydra import flows from flows.flow_launchers import FlowLauncher from flows.backends.api_info import ApiInfo from flows.utils.general_helpers import read_yaml_file from flows import logging from flows.flow_cache import CACHING_PARAMETERS, clear_cache CACHING_PARAMETERS.do_caching = False # Set to True in order to disable caching # clear_cache() # Uncomment this line to clear the cache logging.set_verbosity_debug() dependencies = [ {"url": "aiflows/AutoGPTFlowModule", "revision": os.getcwd()}, {"url": "aiflows/LCToolFlowModule", "revision": "f1020b23fe2a1ab6157c3faaf5b91b5cdaf02c1b"}, ] from flows import flow_verse flow_verse.sync_dependencies(dependencies) if __name__ == "__main__": # ~~~ Set the API information ~~~ # OpenAI backend api_information = [ApiInfo(backend_used="openai", api_key = os.getenv("OPENAI_API_KEY"))] # Azure backend # api_information = ApiInfo(backend_used = "azure", # api_base = os.getenv("AZURE_API_BASE"), # api_key = os.getenv("AZURE_OPENAI_KEY"), # api_version = os.getenv("AZURE_API_VERSION") ) root_dir = "." cfg_path = os.path.join(root_dir, "demo.yaml") cfg = read_yaml_file(cfg_path) cfg["flow"]["subflows_config"]["Controller"]["backend"]["api_infos"] = api_information cfg["flow"]["subflows_config"]["Memory"]["backend"]["api_infos"] = api_information # ~~~ Instantiate the Flow ~~~ flow_with_interfaces = { "flow": hydra.utils.instantiate(cfg['flow'], _recursive_=False, _convert_="partial"), "input_interface": ( None if cfg.get( "input_interface", None) is None else hydra.utils.instantiate(cfg['input_interface'], _recursive_=False) ), "output_interface": ( None if cfg.get( "output_interface", None) is None else hydra.utils.instantiate(cfg['output_interface'], _recursive_=False) ), } # ~~~ Get the data ~~~ # data = {"id": 0, "goal": "Answer the following question: What is the population of Canada?"} # Uses wikipedia # data = {"id": 0, "goal": "Answer the following question: Who was the NBA champion in 2023?"} # Uses duckduckgo data = {"id": 0, "goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?"} # At first, we retrieve information about Michael Jordan the basketball player # If we provide feedback, only in the first round, that we are not interested in the basketball player, # but the statistician, and skip the feedback in the next rounds, we get the correct answer # ~~~ Run inference ~~~ path_to_output_file = None # path_to_output_file = "output.jsonl" # Uncomment this line to save the output to disk _, outputs = FlowLauncher.launch( flow_with_interfaces=flow_with_interfaces, data=data, path_to_output_file=path_to_output_file, ) # ~~~ Print the output ~~~ flow_output_data = outputs[0] print(flow_output_data)