|
name: "Code_Flow" |
|
description: |2- |
|
Given a problem description, generate code directly. |
|
|
|
|
|
input_interface_non_initialized: |
|
- "problem_description" |
|
- "input_description" |
|
- "output_description" |
|
- "io_examples_and_explanation" |
|
|
|
input_interface_initialized: |
|
- "query" |
|
|
|
|
|
output_interface: |
|
- "api_output" |
|
|
|
|
|
backend: |
|
_target_: aiflows.backends.llm_lite.LiteLLMBackend |
|
wait_time_per_key: 6 |
|
model_name: |
|
openai: "gpt-4" |
|
azure: "azure/gpt-4" |
|
n: 1 |
|
max_tokens: 3000 |
|
temperature: 0.3 |
|
top_p: 0.2 |
|
frequency_penalty: 0 |
|
presence_penalty: 0 |
|
|
|
system_message_prompt_template: |
|
_target_: aiflows.prompt_template.JinjaPrompt |
|
template: |2- |
|
Your goal is to provide executable Python code that solves a competitive programming problem. The code should correctly handle all corner cases in order to pass the hidden test cases, which are used to evaluate the correctness of the solution. |
|
|
|
The user will specify the problem by providing you with: |
|
- the problem statement |
|
- input description |
|
- output description |
|
- example test cases |
|
- (optional) explanation of the test cases |
|
|
|
The user will provide you with a task and an output format that you will strictly follow. |
|
input_variables: [] |
|
|
|
|
|
human_message_prompt_template: |
|
_target_: aiflows.prompt_template.JinjaPrompt |
|
template: "{{query}}" |
|
input_variables: |
|
- "query" |
|
|
|
|
|
init_human_message_prompt_template: |
|
_target_: aiflows.prompt_template.JinjaPrompt |
|
template: |2- |
|
# Problem statement |
|
{{problem_description}} |
|
|
|
|
|
{{input_description}} |
|
|
|
|
|
{{output_description}} |
|
|
|
{{io_examples_and_explanation}} |
|
|
|
|
|
The input should be read from the standard input and the output should be passed to the standard output. |
|
Return Python code that solves the problem. Reply in the following format: |
|
```python |
|
{{code_placeholder}} |
|
``` |
|
input_variables: |
|
- "problem_description" |
|
- "input_description" |
|
- "output_description" |
|
- "io_examples_and_explanation" |
|
partial_variables: |
|
code_placeholder: "{{python_code}}" |
|
|
|
|