ControllerExecutorFlowModule / WikiSearchAtomicFlow.py
nbaldwin's picture
remove is_reply
c4d9a5c
raw
history blame
3.05 kB
from copy import deepcopy
from typing import List, Dict, Optional, Any
from aiflows.base_flows import AtomicFlow
from aiflows.messages import FlowMessage
from aiflows.utils import logging
from .wikipediaAPI import WikipediaAPIWrapper
log = logging.get_logger(__name__)
class WikiSearchAtomicFlow(AtomicFlow):
""" This class implements a WikiSearch Atomic Flow. It's used to execute a Wikipedia search and get page summaries.
*Configuration Parameters*:
- `name` (str): The name of the flow. Default: "WikiSearchAtomicFlow"
- `description` (str): A description of the flow. This description is used to generate the help message of the flow.
Default: "A Flow that queries the wikipedia API for a page content."
- `lang` (str): The language of the Wikipedia page. Default: "en"
- `top_k_results` (int): The number of top results to return. Default: 5
- `doc_content_chars_max` (int): The maximum number of characters of the content of the Wikipedia page. Default: 3000
- Other parameters are inherited from the default configuration of AtomicFlow (see AtomicFlow)
*input_interface*:
- `search_term` (str): The search term to search for.
*output_interface*:
- `wiki_content` (str): The content of the Wikipedia page.
:param \**kwargs: The keyword arguments passed to the AtomicFlow constructor
"""
REQUIRED_KEYS_CONFIG = ["lang", "top_k_results", "doc_content_chars_max"]
REQUIRED_KEYS_CONSTRUCTOR = []
SUPPORTS_CACHING: bool = True
api_wrapper: WikipediaAPIWrapper
def __init__(self, **kwargs):
super().__init__(**kwargs)
def run(self,
input_message: FlowMessage):
""" Runs the WikiSearch Atomic Flow. It's used to execute a Wikipedia search and get page summaries.
:param input_message: The input message
:type input_message: FlowMessage
"""
input_data = input_message.data
# ~~~ Process input ~~~
term = input_data.get("search_term", None)
api_wrapper = WikipediaAPIWrapper(
lang=self.flow_config["lang"],
top_k_results=self.flow_config["top_k_results"],
doc_content_chars_max=self.flow_config["doc_content_chars_max"]
)
# ~~~ Call ~~~
if page_content := api_wrapper._fetch_page(term):
search_response = {"wiki_content": page_content, "relevant_pages": None}
else:
page_titles = api_wrapper.search_page_titles(term)
search_response = {"wiki_content": None, "relevant_pages": f"Could not find [{term}]. similar: {page_titles}"}
# Log the update to the flow messages list
observation = search_response["wiki_content"] if search_response["wiki_content"] else search_response["relevant_pages"]
reply = self.package_output_message(
input_message = input_message,
response = {"wiki_content": observation},
)
self.send_message(reply)