"""A simple script to run a Flow that can be used for development and debugging.""" import os import hydra import aiflows from aiflows.backends.api_info import ApiInfo from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys from aiflows import logging from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache from aiflows.utils import serve_utils from aiflows.workers import run_dispatch_worker_thread from aiflows.messages import FlowMessage from aiflows.interfaces import KeyInterface from aiflows.utils.colink_utils import start_colink_server from aiflows.workers import run_dispatch_worker_thread CACHING_PARAMETERS.do_caching = False # Set to True in order to disable caching # clear_cache() # Uncomment this line to clear the cache logging.set_verbosity_debug() dependencies = [ {"url": "aiflows/ControllerExecutorFlowModule", "revision": os.getcwd()} ] from aiflows import flow_verse flow_verse.sync_dependencies(dependencies) if __name__ == "__main__": #1. ~~~~~ Set up a colink server ~~~~ FLOW_MODULES_PATH = "./" cl = start_colink_server() #2. ~~~~~Load flow config~~~~~~ root_dir = "." cfg_path = os.path.join(root_dir, "demo.yaml") cfg = read_yaml_file(cfg_path) #2.1 ~~~ Set the API information ~~~ # OpenAI backend api_information = [ApiInfo(backend_used="openai", api_key = os.getenv("OPENAI_API_KEY"))] # # Azure backend # api_information = ApiInfo(backend_used = "azure", # api_base = os.getenv("AZURE_API_BASE"), # api_key = os.getenv("AZURE_OPENAI_KEY"), # api_version = os.getenv("AZURE_API_VERSION") ) quick_load_api_keys(cfg, api_information, key="api_infos") #3. ~~~~ Serve The Flow ~~~~ # serve_utils.recursive_serve_flow( # cl = cl, # flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.WikiSearchAtomicFlow", # flow_endpoint="WikiSearchAtomicFlow", # ) # serve_utils.serve_flow( # cl = cl, # flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerAtomicFlow", # flow_endpoint="ControllerAtomicFlow", # ) serve_utils.recursive_serve_flow( cl = cl, flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerExecutorFlow", flow_endpoint="ControllerExecutorFlow", ) #4. ~~~~~Start A Worker Thread~~~~~ run_dispatch_worker_thread(cl) #5. ~~~~~Mount the flow and get its proxy~~~~~~ proxy_flow= serve_utils.get_flow_instance( cl=cl, flow_endpoint="ControllerExecutorFlow", user_id="local", config_overrides = cfg ) #6. ~~~ Get the data ~~~ data = { "id": 0, "goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?", } #option1: use the FlowMessage class input_message = FlowMessage( data=data, ) #option2: use the proxy_flow #input_message = proxy_flow.package_input_message(data = data) #7. ~~~ Run inference ~~~ future = proxy_flow.get_reply_future(input_message) #uncomment this line if you would like to get the full message back #reply_message = future.get_message() reply_data = future.get_data() # ~~~ Print the output ~~~ print("~~~~~~Reply~~~~~~") print(reply_data) #8. ~~~~ (Optional) apply output interface on reply ~~~~ # output_interface = KeyInterface( # keys_to_rename={"api_output": "answer"}, # ) # print("Output: ", output_interface(reply_data)) #9. ~~~~~Optional: Unserve Flow~~~~~~ # serve_utils.delete_served_flow(cl, "FlowModule")