"""A simple script to run a Flow that can be used for development and debugging.""" import os import hydra import flows from flows.flow_launchers import FlowLauncher, ApiInfo from flows.utils.general_helpers import read_yaml_file from flows import logging from flows.flow_cache import CACHING_PARAMETERS, clear_cache CACHING_PARAMETERS.do_caching = False # Set to True to enable caching # clear_cache() # Uncomment this line to clear the cache logging.set_verbosity_debug() if __name__ == "__main__": # ~~~ Instantiate the Flow ~~~ root_dir = "." cfg_path = os.path.join(root_dir, "demo.yaml") cfg = read_yaml_file(cfg_path) # ~~~ Instantiate the Flow ~~~ flow_with_interfaces = { "flow": hydra.utils.instantiate(cfg['flow'], _recursive_=False, _convert_="partial"), "input_interface": ( None if cfg.get( "input_interface", None) is None else hydra.utils.instantiate(cfg['input_interface'], _recursive_=False) ), "output_interface": ( None if cfg.get( "output_interface", None) is None else hydra.utils.instantiate(cfg['output_interface'], _recursive_=False) ), } # ~~~ Get the data ~~~ # This can be a list of samples data = {"id": 0} # Add your data here # ~~~ Run inference ~~~ path_to_output_file = None # path_to_output_file = "output.jsonl" # Uncomment this line to save the output to disk _, outputs = FlowLauncher.launch( flow_with_interfaces=flow_with_interfaces, data=data, path_to_output_file=path_to_output_file, ) # ~~~ Print the output ~~~ flow_output_data = outputs[0] print(flow_output_data)