Commit
·
bfb6e70
1
Parent(s):
74a9992
First commit.
Browse files- ChromaDBFlow.py +68 -0
- ChromaDBFlow.yaml +10 -0
- README.md +25 -0
- VectorStoreFlow.py +84 -0
- VectorStoreFlow.yaml +15 -0
- __init__.py +2 -0
- pip_requirements.py +1 -0
ChromaDBFlow.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
|
8 |
+
from chromadb import Client as ChromaClient
|
9 |
+
|
10 |
+
from flows.base_flows import AtomicFlow
|
11 |
+
|
12 |
+
|
13 |
+
class ChromaDBFlow(AtomicFlow):
|
14 |
+
|
15 |
+
def __init__(self, **kwargs):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
self.client = ChromaClient()
|
18 |
+
self.collection = self.client.get_or_create_collection(name=self.flow_config["name"])
|
19 |
+
|
20 |
+
def get_input_keys(self) -> List[str]:
|
21 |
+
return self.flow_config["input_keys"]
|
22 |
+
|
23 |
+
def get_output_keys(self) -> List[str]:
|
24 |
+
return self.flow_config["output_keys"]
|
25 |
+
|
26 |
+
def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
27 |
+
|
28 |
+
api_information = self._get_from_state("api_information")
|
29 |
+
|
30 |
+
if api_information.backend_used == "openai":
|
31 |
+
embeddings = OpenAIEmbeddings(openai_api_key=api_information.api_key)
|
32 |
+
else:
|
33 |
+
# ToDo: Add support for Azure
|
34 |
+
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
35 |
+
response = {}
|
36 |
+
|
37 |
+
operation = input_data["operation"]
|
38 |
+
if operation not in ["write", "read"]:
|
39 |
+
raise ValueError(f"Operation '{operation}' not supported")
|
40 |
+
|
41 |
+
content = input_data["content"]
|
42 |
+
if operation == "read":
|
43 |
+
if not isinstance(content, str):
|
44 |
+
raise ValueError(f"content(query) must be a string during read, got {type(content)}: {content}")
|
45 |
+
if content == "":
|
46 |
+
response["retrieved"] = [[""]]
|
47 |
+
return response
|
48 |
+
query = content
|
49 |
+
query_result = self.collection.query(
|
50 |
+
query_embeddings=embeddings.embed_query(query),
|
51 |
+
n_results=self.flow_config["n_results"]
|
52 |
+
)
|
53 |
+
|
54 |
+
response["retrieved"] = [doc for doc in query_result["documents"]]
|
55 |
+
|
56 |
+
elif operation == "write":
|
57 |
+
if content != "":
|
58 |
+
if not isinstance(content, list):
|
59 |
+
content = [content]
|
60 |
+
documents = content
|
61 |
+
self.collection.add(
|
62 |
+
ids=[str(uuid.uuid4()) for _ in range(len(documents))],
|
63 |
+
embeddings=embeddings.embed_documents(documents),
|
64 |
+
documents=documents
|
65 |
+
)
|
66 |
+
response["retrieved"] = ""
|
67 |
+
|
68 |
+
return response
|
ChromaDBFlow.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: chroma_db
|
2 |
+
description: ChromaDB is a document store that uses vector embeddings to store and retrieve documents
|
3 |
+
|
4 |
+
input_keys:
|
5 |
+
- operation
|
6 |
+
- content
|
7 |
+
output_keys:
|
8 |
+
- retrieved
|
9 |
+
|
10 |
+
n_results: 5 # number of results to retrieve when query
|
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
## Description
|
5 |
+
ToDo
|
6 |
+
|
7 |
+
< Flow description >
|
8 |
+
|
9 |
+
## Configuration parameters
|
10 |
+
|
11 |
+
< Name 1 > (< Type 1 >): < Description 1 >. Required parameter.
|
12 |
+
|
13 |
+
< Name 2 > (< Type 2 >): < Description 2 >. Default value is: < value 2 >
|
14 |
+
|
15 |
+
## Input interface
|
16 |
+
|
17 |
+
< Name 1 > (< Type 1 >): < Description 1 >.
|
18 |
+
|
19 |
+
(Note that the interface might depend on the state of the Flow.)
|
20 |
+
|
21 |
+
## Output interface
|
22 |
+
|
23 |
+
< Name 1 > (< Type 1 >): < Description 1 >.
|
24 |
+
|
25 |
+
(Note that the interface might depend on the state of the Flow.)
|
VectorStoreFlow.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from typing import Dict, List, Any, Optional
|
3 |
+
|
4 |
+
import faiss
|
5 |
+
|
6 |
+
from langchain.docstore import InMemoryDocstore
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.schema import Document
|
9 |
+
from langchain.vectorstores import Chroma, FAISS
|
10 |
+
from langchain.vectorstores.base import VectorStoreRetriever
|
11 |
+
|
12 |
+
from flows.base_flows import AtomicFlow
|
13 |
+
|
14 |
+
|
15 |
+
class VectorStoreFlow(AtomicFlow):
|
16 |
+
REQUIRED_KEYS_CONFIG = ["type", "api_keys"]
|
17 |
+
|
18 |
+
vector_db: VectorStoreRetriever
|
19 |
+
|
20 |
+
def __init__(self, vector_db, **kwargs):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.vector_db = vector_db
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def _set_up_retriever(cls, config: Dict[str, Any]) -> Dict[str, Any]:
|
26 |
+
embeddings = OpenAIEmbeddings(openai_api_key=config["api_keys"]["openai"])
|
27 |
+
kwargs = {}
|
28 |
+
|
29 |
+
vs_type = config["type"]
|
30 |
+
|
31 |
+
if vs_type == "chroma":
|
32 |
+
vectorstore = Chroma(config["name"], embedding_function=embeddings)
|
33 |
+
elif vs_type == "faiss":
|
34 |
+
index = faiss.IndexFlatL2(config.get("embedding_size", 1536))
|
35 |
+
vectorstore = FAISS(
|
36 |
+
embedding_function=embeddings.embed_query,
|
37 |
+
index=index,
|
38 |
+
docstore=InMemoryDocstore({}),
|
39 |
+
index_to_docstore_id={}
|
40 |
+
)
|
41 |
+
else:
|
42 |
+
raise NotImplementedError(f"Vector store '{vs_type}' not implemented")
|
43 |
+
|
44 |
+
kwargs["vector_db"] = vectorstore.as_retriever(**config.get("retriever_config", {}))
|
45 |
+
|
46 |
+
return kwargs
|
47 |
+
|
48 |
+
@classmethod
|
49 |
+
def instantiate_from_config(cls, config: Dict[str, Any]):
|
50 |
+
flow_config = deepcopy(config)
|
51 |
+
|
52 |
+
kwargs = {"flow_config": flow_config}
|
53 |
+
|
54 |
+
kwargs.update(cls._set_up_retriever(flow_config))
|
55 |
+
|
56 |
+
return cls(**kwargs)
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def package_documents(documents: List[str]) -> List[Document]:
|
60 |
+
# TODO(yeeef): support metadata
|
61 |
+
return [Document(page_content=doc, metadata={"": ""}) for doc in documents]
|
62 |
+
|
63 |
+
def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
64 |
+
response = {}
|
65 |
+
|
66 |
+
operation = input_data["operation"]
|
67 |
+
assert operation in ["write", "read"], f"Operation '{operation}' not supported"
|
68 |
+
|
69 |
+
content = input_data["content"]
|
70 |
+
if operation == "read":
|
71 |
+
assert isinstance(content, str), f"Content must be a string, got {type(content)}"
|
72 |
+
query = content
|
73 |
+
retrieved_documents = self.vector_db.get_relevant_documents(query)
|
74 |
+
response["retrieved"] = [doc.page_content for doc in retrieved_documents]
|
75 |
+
elif operation == "write":
|
76 |
+
if isinstance(content, str):
|
77 |
+
content = [content]
|
78 |
+
assert isinstance(content, list), f"Content must be a list of strings, got {type(content)}"
|
79 |
+
documents = content
|
80 |
+
documents = self.package_documents(documents)
|
81 |
+
self.vector_db.add_documents(documents)
|
82 |
+
response["retrieved"] = ""
|
83 |
+
|
84 |
+
return response
|
VectorStoreFlow.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "VectorStoreFlow"
|
2 |
+
description: "VectorStoreFlow"
|
3 |
+
|
4 |
+
input_keys:
|
5 |
+
- "operation" # read or write
|
6 |
+
- "content"
|
7 |
+
|
8 |
+
output_keys:
|
9 |
+
- "retrieved"
|
10 |
+
|
11 |
+
type: "chroma"
|
12 |
+
api_keys:
|
13 |
+
openai: "YOUR_OPENAI_API_KEY"
|
14 |
+
|
15 |
+
|
__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .VectorStoreFlow import VectorStoreFlow
|
2 |
+
from .ChromaDBFlow import ChromaDBFlow
|
pip_requirements.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# ToDo
|