File size: 9,129 Bytes
8dbf36f
5329831
 
 
 
 
5c1d9fa
 
 
 
5329831
 
5c1d9fa
 
8dbf36f
 
f892776
8dbf36f
dd2a325
 
5c1d9fa
8dbf36f
6e13dcc
263b093
9959330
cf2642f
6c2bc0a
20c329d
8dbf36f
 
 
 
49803fe
 
 
 
 
 
 
 
 
 
 
 
8dbf36f
d8b43d7
 
5c1d9fa
 
 
 
 
 
8dbf36f
c37f874
8dbf36f
c37f874
 
8dbf36f
f922dc5
 
9f4261d
f922dc5
 
 
 
 
 
 
 
 
 
d2065af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f922dc5
 
9f4261d
f922dc5
 
 
 
 
 
 
 
 
d2065af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f922dc5
 
8dbf36f
 
 
 
fda4ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbf36f
 
 
8ca8743
8dbf36f
 
 
fda4ad5
8dbf36f
 
 
 
6213110
8dbf36f
6213110
 
 
 
8dbf36f
 
 
 
6213110
20c329d
6213110
 
 
8dbf36f
6213110
8dbf36f
 
 
6213110
8dbf36f
 
 
6213110
8dbf36f
 
 
6213110
8dbf36f
 
 
6213110
8dbf36f
 
 
39a9927
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
datasets:
- common-canvas/commoncatalog-cc-by
- madebyollin/megalith-10m
- madebyollin/soa-full
- alfredplpl/artbench-pd-256x256
language:
- ja
- en
library_name: diffusers
license: apache-2.0
pipeline_tag: text-to-image
tags:
- art
---

# Model Card for CommonArt β

![eyecatch](eyecatch.jpg)

This is a text-to-image model learning from CC-BY-4.0, CC-0 or CC-0 like images.

## Updates
- 2024/10/22: Release the [paper](https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/936)
- 2024/09/25: Update the model. (for paper)
- 2024/09/21: Update the model. (30000 L4 GPU hours)
- 2024/09/09: Release this model. (20000 L4 GPU hours)

## Model Details

### Model Description

At AI Picasso, we develop AI technology through active dialogue with creators, aiming for mutual understanding and cooperation. 
We strive to solve challenges faced by creators and grow together. 
One of these challenges is that some creators and fans want to use image generation but can't, likely due to the lack of permission to use certain images for training.
To address this issue, we have developed CommonArt β. As it's still in beta, its capabilities are limited. 
However, its structure is expected to be the same as the final version.

#### Features of CommonArt β

- Principally uses images with obtained learning permissions
- Understands both Japanese and English text inputs directly
- Minimizes the risk of exact reproduction of training images
- Utilizes cutting-edge technology for high quality and efficiency

### Misc.

- **Developed by:** alfredplpl
- **Funded by:** AI Picasso, Inc.
- **Shared by:** AI Picasso, Inc.
- **Model type:** Diffusion Transformer based architecture
- **Language(s) (NLP):** Japanese, English
- **License:** Apache-2.0

### Model Sources

- **Repository:** [Github](https://github.com/PixArt-alpha/PixArt-sigma)
- **Paper :** [PIXART-δ](https://arxiv.org/abs/2401.05252)

## How to Get Started with the Model

- diffusers for 16GB+ VRAM GPU
  
1. Install libraries.

```bash
pip install transformers diffusers
```

2. Run the following script

```python
import torch
from diffusers import Transformer2DModel, PixArtSigmaPipeline, AutoencoderKL, DPMSolverMultistepScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer

# Prompts
prompt = "カラフルなお花畑。赤、青、黄、紫、ピンクなどの色とりどりの花に溢れている。"
neg_prompt=""

# Settings
device = "cuda"
weight_dtype = torch.float32
weight_dtype_te = torch.bfloat16
generator = torch.Generator().manual_seed(44)

# Load text encoder
tokenizer = AutoTokenizer.from_pretrained("cyberagent/calm2-7b")
text_encoder =  AutoModelForCausalLM.from_pretrained(
    "cyberagent/calm2-7b",
    torch_dtype=weight_dtype_te,
    device_map=device
)

# Get text embeddings
with torch.no_grad():
    pos_ids = tokenizer(
        prompt, max_length=512, padding="max_length", truncation=True, return_tensors="pt",
    ).to(device)
    pos_emb = text_encoder(pos_ids.input_ids, output_hidden_states=True, attention_mask=pos_ids.attention_mask)
    pos_emb = pos_emb.hidden_states[-1]
    neg_ids = tokenizer(
        neg_prompt, max_length=512, padding="max_length", truncation=True, return_tensors="pt",
    ).to(device)
    neg_emb = text_encoder(neg_ids.input_ids, output_hidden_states=True, attention_mask=neg_ids.attention_mask)
    neg_emb = neg_emb.hidden_states[-1]

# Important
del text_encoder

# load models
transformer = Transformer2DModel.from_pretrained(
    "aipicasso/commonart-beta",
    torch_dtype=weight_dtype
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=weight_dtype)
scheduler=DPMSolverMultistepScheduler()

pipe = PixArtSigmaPipeline(
    vae=vae,
    tokenizer=None,
    text_encoder=None,
    transformer=transformer,
    scheduler=scheduler
)

pipe.to(device)

# Generate Image
with torch.no_grad():
    image = pipe(
        negative_prompt=None,
        prompt_embeds=pos_emb,
        negative_prompt_embeds=neg_emb,
        prompt_attention_mask=pos_ids.attention_mask,
        negative_prompt_attention_mask=neg_ids.attention_mask,
        max_sequence_length=512,
        width=512,
        height=512,
        num_inference_steps=20,
        generator=generator,
        guidance_scale=4.5).images[0]
image.save("flowers.png")

```

- diffusers for 8GB VRAM GPU
1. Install libraries.

```bash
pip install transformers diffusers quanto
```

2. Run the following script

```python
import torch
from diffusers import Transformer2DModel, PixArtSigmaPipeline, AutoencoderKL, DPMSolverMultistepScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer, QuantoConfig

# Prompts
prompt = "カラフルなお花畑。赤、青、黄、紫、ピンクなどの色とりどりの花に溢れている。"
neg_prompt=""

# Settings
device = "cuda"
weight_dtype = torch.bfloat16
weight_dtype_te = torch.bfloat16
generator = torch.Generator().manual_seed(44)

# Load text encoder
tokenizer = AutoTokenizer.from_pretrained("cyberagent/calm2-7b")
quantization_config = QuantoConfig(weights="int8")
text_encoder =  AutoModelForCausalLM.from_pretrained(
    "cyberagent/calm2-7b",
    quantization_config=quantization_config,
    torch_dtype=weight_dtype_te,
    device_map=device
)

# Get text embeddings
with torch.no_grad():
    pos_ids = tokenizer(
        prompt, max_length=512, padding="max_length", truncation=True, return_tensors="pt",
    ).to(device)
    pos_emb = text_encoder(pos_ids.input_ids, output_hidden_states=True, attention_mask=pos_ids.attention_mask)
    pos_emb = pos_emb.hidden_states[-1]
    neg_ids = tokenizer(
        neg_prompt, max_length=512, padding="max_length", truncation=True, return_tensors="pt",
    ).to(device)
    neg_emb = text_encoder(neg_ids.input_ids, output_hidden_states=True, attention_mask=neg_ids.attention_mask)
    neg_emb = neg_emb.hidden_states[-1]

# Important
del text_encoder

# load models
transformer = Transformer2DModel.from_pretrained(
    "aipicasso/commonart-beta",
    torch_dtype=weight_dtype
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=weight_dtype)
scheduler=DPMSolverMultistepScheduler()

pipe = PixArtSigmaPipeline(
    vae=vae,
    tokenizer=None,
    text_encoder=None,
    transformer=transformer,
    scheduler=scheduler
)

pipe.to(device)

# Generate Image
with torch.no_grad():
    image = pipe(
        negative_prompt=None,
        prompt_embeds=pos_emb,
        negative_prompt_embeds=neg_emb,
        prompt_attention_mask=pos_ids.attention_mask,
        negative_prompt_attention_mask=neg_ids.attention_mask,
        max_sequence_length=512,
        width=512,
        height=512,
        num_inference_steps=20,
        generator=generator,
        guidance_scale=4.5).images[0]
image.save("flowers.png")
```

## Uses

### Direct Use

- Assistance in creating illustrations, manga, and anime
  - For both commercial and non-commercial purposes
  - Communication with creators when making requests
- Commercial provision of image generation services
  - Please be cautious when handling generated content
- Self-expression
  - Using this AI to express "your" uniqueness
- Research and development
  - Fine-tuning (also known as additional training) such as LoRA
  - Merging with other models
  - Examining the performance of this model using metrics like FID
- Education
  - Graduation projects for art school or vocational school students
  - University students' graduation theses or project assignments
  - Teachers demonstrating the current state of image generation AI
- Uses described in the Hugging Face Community
  - Please ask questions in Japanese or English

### Out-of-Scope Use

- Generate misinfomation such as DeepFake.

## Bias, Risks, and Limitations

See Yahoo Flickr Creative Commons 100M dataset for more information. The information was collected circa 2014 and known to have a bias towards internet connected Western countries. Some areas such as the global south lack representation.

## Training Details

### Training Data
We used these dataset to train the diffusion transformer:

- [CommonCatalog-cc-by](https://huggingface.co/datasets/common-canvas/commoncatalog-cc-by)
- [Megalith-10M](https://huggingface.co/datasets/madebyollin/megalith-10m)
- [Smithonian Open Access](https://huggingface.co/datasets/madebyollin/soa-full)
- [ArtBench (CC-0 only) ](https://huggingface.co/datasets/alfredplpl/artbench-pd-256x256)


## Environmental Impact

- **Hardware Type:** NVIDIA L4
- **Hours used:** 30000
- **Cloud Provider:** Google Cloud
- **Compute Region:** Japan
- **Carbon Emitted:** free

## Technical Specifications

### Model Architecture and Objective

[Pixart-Σ based architecture](https://github.com/PixArt-alpha/PixArt-sigma)

### Compute Infrastructure

Google Cloud (Tokyo Region).

#### Hardware

We used NVIDIA L4x8 instance 4 nodes. (Total: L4x32)

#### Software

[Pixart-Σ based code](https://github.com/PixArt-alpha/PixArt-sigma)

## Model Card Contact

- support@aipicasso.app

# Acknowledgement
We approciate the image providers.
So, we are **standing on the shoulders of giants**.