Plaban81 commited on
Commit
18545f0
1 Parent(s): 834d8cb

Updated Readme with required details

Browse files
Files changed (1) hide show
  1. README.md +245 -1
README.md CHANGED
@@ -5,4 +5,248 @@ datasets:
5
  metrics:
6
  - accuracy
7
  pipeline_tag: text-generation
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  metrics:
6
  - accuracy
7
  pipeline_tag: text-generation
8
+ ---
9
+ # Model card for aiplanet/effi-13b
10
+
11
+ effic-13B parameters is a causal decoder-only model built by Aiplanet based on Llama-2-13b-chat-hf and fine tuned using the CoT dataset available in huggingface datasets.It is made available under the Apache 2.0 license.
12
+
13
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
14
+
15
+ ## Why use Falcon-40B-Instruct?
16
+ - This is a ready to use chat/instruct model based on Llama-2-13b-chat-hf which provides a rationale for the context provided.
17
+ - Llam-2 is the bset open source model available.
18
+ This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from **Llama-2-13b-chat-hf**
19
+
20
+ You will need at least **85-100GB of memory to swiftly run inference with effi-17b**.
21
+
22
+ ## Model Details
23
+
24
+ ### Model Description
25
+
26
+ This model has been fine tuned on Chain of Thought datsets which has context from mixed sources with corresponding rationale. The final finetuned Large Language Model(LLM) have shown enhanced capabilities of solving novel tasks by providing a reasoning.
27
+
28
+
29
+
30
+ - **Developed by:** AiPlanet
31
+ - **Model type:** Casual Decoder only
32
+ - **Language(s) (NLP):** English
33
+ - **License:** Apache 2.0
34
+ - **Finetuned from model :** Llama-2-13b-chat-hf
35
+
36
+ ### Model Sources [optional]
37
+
38
+ <!-- Provide the basic links for the model. -->
39
+
40
+ - **Repository:** [More Information Needed]
41
+ - **Paper [optional]:** [More Information Needed]
42
+ - **Demo [optional]:** [More Information Needed]
43
+
44
+ ## Uses
45
+
46
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
+
48
+ ### Direct Use
49
+
50
+ effic-17b has been finetuned on a Chain of Thought dataset.
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
55
+
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ This model has been majorly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
60
+
61
+ ### Recommendations
62
+
63
+ We recommend users of effic-13b to develop guardrails and to take appropriate precautions for any production use.
64
+
65
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
66
+
67
+ ## How to Get Started with the Model
68
+
69
+ Use the code below to get started with the model.
70
+
71
+ ```
72
+ from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline)
73
+ model_card = "aiplanet/effi-13b"
74
+ #
75
+ model = AutoModelForCausalLM.from_pretrained(model_card)
76
+ tokenizer = AutoTokenizer.from_pretrained(model_card)
77
+ #
78
+ generate_text = transformers.pipeline(
79
+ model=model, tokenizer=tokenizer,
80
+ return_full_text=True, # langchain expects the full text
81
+ task='text-generation',
82
+ # we pass model parameters here too
83
+ temperature=0.4, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
84
+ max_new_tokens=512, # mex number of tokens to generate in the output
85
+ repetition_penalty=1.1 # without this output begins repeating
86
+ )
87
+ #
88
+ promt = """
89
+ Can you explain this code in detail?
90
+
91
+ def generate_stream(tokenizer, model, params, device,
92
+ context_len=2048, stream_interval=2):
93
+
94
+ prompt = params["prompt"]
95
+ l_prompt = len(prompt)
96
+ temperature = float(params.get("temperature", 1.0))
97
+ max_new_tokens = int(params.get("max_new_tokens", 256))
98
+ stop_str = params.get("stop", None)
99
+
100
+ input_ids = tokenizer(prompt).input_ids
101
+ output_ids = list(input_ids)
102
+
103
+ max_src_len = context_len - max_new_tokens - 8
104
+ input_ids = input_ids[-max_src_len:]
105
+
106
+ for i in range(max_new_tokens):
107
+ if i == 0:
108
+ out = model(
109
+ torch.as_tensor([input_ids], device=device), use_cache=True)
110
+ logits = out.logits
111
+ past_key_values = out.past_key_values
112
+ else:
113
+ attention_mask = torch.ones(
114
+ 1, past_key_values[0][0].shape[-2] + 1, device=device)
115
+ out = model(input_ids=torch.as_tensor([[token]], device=device),
116
+ use_cache=True,
117
+ attention_mask=attention_mask,
118
+ past_key_values=past_key_values)
119
+ logits = out.logits
120
+ past_key_values = out.past_key_values
121
+
122
+ last_token_logits = logits[0][-1]
123
+
124
+ if device == "mps":
125
+ # Switch to CPU by avoiding some bugs in mps backend.
126
+ last_token_logits = last_token_logits.float().to("cpu")
127
+
128
+ if temperature < 1e-4:
129
+ token = int(torch.argmax(last_token_logits))
130
+ else:
131
+ probs = torch.softmax(last_token_logits / temperature, dim=-1)
132
+ token = int(torch.multinomial(probs, num_samples=1))
133
+
134
+ output_ids.append(token)
135
+
136
+ if token == tokenizer.eos_token_id:
137
+ stopped = True
138
+ else:
139
+ stopped = False
140
+
141
+ if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
142
+ output = tokenizer.decode(output_ids, skip_special_tokens=True)
143
+ pos = output.rfind(stop_str, l_prompt)
144
+ if pos != -1:
145
+ output = output[:pos]
146
+ stopped = True
147
+ yield output
148
+
149
+ if stopped:
150
+ break
151
+
152
+ del past_key_values
153
+ """
154
+ #
155
+ system_message = "Given your chain of thought reasoning, provide a rationale for the context in the source."
156
+ prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{prompt}. [/INST]" # replace the command here with something relevant to your task
157
+ #
158
+ result = generate_text(prompt)
159
+ print(result[0]['generated_text'].strip().split("[/INST]")[-1])
160
+
161
+ ```
162
+
163
+ ## Training Details
164
+
165
+ ### Training Data
166
+
167
+ effic-13b has been finetuned on https://huggingface.co/datasets/kaist-ai/CoT-Collection
168
+ The data was tokenized with the **meta-llama/Llama-2-13b-chat-hf** tokenizer.
169
+
170
+
171
+ ### Training Procedure
172
+
173
+ Finetuning approach using PefT and Qlora(https://huggingface.co/blog/4bit-transformers-bitsandbytes)
174
+
175
+ #### Preprocessing [optional]
176
+
177
+ [More Information Needed]
178
+
179
+
180
+ #### Training Hyperparameters
181
+
182
+ - **Training regime:**
183
+
184
+ - lora_alpha=32,
185
+ - lora_dropout=0.05,
186
+ - r=8,
187
+ - bias="none",
188
+ - task_type="CAUSAL_LM"
189
+ #
190
+ - load_in_4bit=True,
191
+ - bnb_4bit_quant_type = "nf4",
192
+ - bnb_4bit_use_double_quant=True,
193
+ - bnb_4bit_compute_dtype=torch.bfloat16
194
+ #
195
+ - num_train_epochs = 1
196
+ - fp16 = False
197
+ - bf16 = False
198
+ - per_device_train_batch_size = 1
199
+ - per_device_eval_batch_size = 1
200
+ - gradient_accumulation_steps = 4
201
+ - gradient_checkpointing = True
202
+ - max_grad_norm = 0.3
203
+ - learning_rate = 2e-4
204
+ - weight_decay = 0.001
205
+ - optim = "paged_adamw_32bit"
206
+ - lr_scheduler_type = "constant"
207
+ - max_steps = 500
208
+ - warmup_ratio = 0.03
209
+ - group_by_length = True
210
+ - save_steps = 25
211
+ - logging_steps = 5
212
+ - max_seq_length = 2048
213
+ - packing = False
214
+ - device_map = {"": 0}
215
+
216
+ ## Evaluation
217
+
218
+ Paper coming soon.
219
+
220
+ See the OpenLLM Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)for early results.
221
+
222
+ ## Technical Specifications [optional]
223
+
224
+ ### Model Architecture and Objective
225
+
226
+ [More Information Needed]
227
+
228
+ ### Compute Infrastructure
229
+
230
+ [More Information Needed]
231
+
232
+ #### Hardware
233
+
234
+ [More Information Needed]
235
+
236
+ #### Software
237
+
238
+ [More Information Needed]
239
+
240
+ ## Citation
241
+
242
+ @article{effic-13b,
243
+ title={{effic-13b}: an open large language model with state-of-the-art performance},
244
+ author={aiplanet},
245
+ year={2023}
246
+ }
247
+
248
+ ## Model Card Contact
249
+
250
+ community@aiplanet.com
251
+
252
+