File size: 7,427 Bytes
9748088
 
adcc310
 
 
 
 
9748088
adcc310
 
 
 
 
 
 
e3be56f
adcc310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c651dd6
 
adcc310
 
c651dd6
adcc310
 
c651dd6
 
 
 
adcc310
 
c651dd6
 
adcc310
c651dd6
 
adcc310
c651dd6
adcc310
c651dd6
 
3175c43
adcc310
 
c651dd6
 
adcc310
 
c651dd6
 
 
 
 
 
 
 
adcc310
bbb16d4
 
 
 
 
 
 
92b5342
 
 
 
 
 
 
 
 
 
 
 
 
f51d310
 
 
 
 
 
41c6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
datasets:
- aisquared/databricks-dolly-15k
language:
- en
library_name: transformers
---


# Model Card for `dlite-v2-355m`

<!-- Provide a quick summary of what the model is/does. -->

AI Squared's `dlite-v2-355m` is a large language 
model which is derived from OpenAI's medium [GPT-2](https://huggingface.co/gpt2-medium) model and fine-tuned on a single GPU on a corpus of 15k records
([Databricks' "Dolly 15k" Dataset](https://huggingface.co/datasets/aisquared/databricks-dolly-15k)) to help it exhibit chat-based capabilities.

Just like [Databricks' Dolly V2 models](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm),
`dlite-v2-355m` (and all other members of the `dlite-v2` family) is licensed for both **research and commercial use.** We are extremely grateful 
for the work that Databricks has done to create the `databricks-dolly-15k` dataset, for without it we would not be able to create and release this
model under such an open and permissive license.

While `dlite-v2-355m` is **not a state-of-the-art model**, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply
is important to showcase, as it continues to demonstrate that creating powerful AI capabilities may be much more accessible than previously thought. 


### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** AI Squared, Inc.
- **Shared by:** AI Squared, Inc.
- **Model type:** Large Language Model
- **Language(s) (NLP):** EN
- **License:** Apache v2.0
- **Finetuned from model:** GPT-2


## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

**`dlite-v2-355m` is not a state-of-the-art language model.** `dlite-v2-355m` is an experimental technology, and as with any experimental technology, 
AI Squared urges potential users of this technology to test its capabilities thoroughly before usage.
Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include,
but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations.
Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology.


## Usage

To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
From your terminal, run:

```python
pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2"
```

The instruction following pipeline can be loaded using the `pipeline` function as shown below.  This loads a custom `InstructionTextGenerationPipeline` 
found in the model repo [here](https://huggingface.co/aisquared/dlite-v2-355m/blob/main/instruct_pipeline.py), which is why `trust_remote_code=True` is required.
Including `torch_dtype=torch.bfloat16` is generally recommended if this type is supported in order to reduce memory usage.  It does not appear to impact output quality.
It is also fine to remove it if there is sufficient memory.

```python
from transformers import pipeline
import torch

generate_text = pipeline(model="aisquared/dlite-v2-355m", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
```

You can then use the pipeline to answer instructions:

```python
res = generate_text("Who was George Washington?")
print(res)
```

Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/aisquared/dlite-v2-355m/blob/main/instruct_pipeline.py),
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:

```python
from instruct_pipeline import InstructionTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("aisquared/dlite-v2-355m", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("aisquared/dlite-v2-355m", device_map="auto", torch_dtype=torch.bfloat16)

generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
```

### Model Performance Metrics

We present the results from various model benchmarks on the EleutherAI LLM Evaluation Harness for all models in the DLite family.
Model results are sorted by mean score, ascending, to provide an ordering. These metrics serve to further show that none of the DLite models are
state of the art, but rather further show that chat-like behaviors in LLMs can be trained almost independent of model size.

| Model         |   arc_challenge |   arc_easy |    boolq |   hellaswag |   openbookqa |     piqa |   winogrande |
|:--------------|----------------:|-----------:|---------:|------------:|-------------:|---------:|-------------:|
| dlite-v2-124m |        0.199659 |   0.447811 | 0.494801 |    0.291675 |        0.156 | 0.620239 |     0.487766 |
| gpt2          |        0.190273 |   0.438131 | 0.487156 |    0.289185 |        0.164 | 0.628945 |     0.51618  |
| dlite-v1-124m |        0.223549 |   0.462542 | 0.502446 |    0.293268 |        0.17  | 0.622416 |     0.494081 |
| gpt2-medium   |        0.215017 |   0.490741 | 0.585933 |    0.333101 |        0.186 | 0.676279 |     0.531176 |
| dlite-v2-355m |        0.251706 |   0.486111 | 0.547401 |    0.344354 |        0.216 | 0.671926 |     0.52723  |
| dlite-v1-355m |        0.234642 |   0.507576 | 0.600306 |    0.338478 |        0.216 | 0.664309 |     0.496448 |
| gpt2-large    |        0.216724 |   0.531566 | 0.604893 |    0.363971 |        0.194 | 0.703482 |     0.553275 |
| dlite-v1-774m |        0.250853 |   0.545875 | 0.614985 |    0.375124 |        0.218 | 0.698041 |     0.562747 |
| dlite-v2-774m |        0.269625 |   0.52904  | 0.613761 |    0.395937 |        0.256 | 0.691513 |     0.566693 |
| gpt2-xl       |        0.25     |   0.582912 | 0.617737 |    0.400418 |        0.224 | 0.708379 |     0.583268 |
| dlite-v1-1_5b |        0.268771 |   0.588384 | 0.624159 |    0.401414 |        0.226 | 0.708379 |     0.584846 |
| dlite-v2-1_5b |        0.289249 |   0.565657 | 0.601223 |    0.434077 |        0.272 | 0.703482 |     0.588003 |

### Limitations
*DLite is an experimental technology and is not designed for use in any environment without significant testing and safety consideration.
Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include, but are not limited to: factual
inaccuracies, biases, offensive responses, toxicity, and hallucinations. Just as with any other LLM, we advise users of this technology
to exercise good judgment when applying this technology.*
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aisquared__dlite-v2-355m)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 27.53   |
| ARC (25-shot)         | 28.33          |
| HellaSwag (10-shot)   | 40.54    |
| MMLU (5-shot)         | 26.77         |
| TruthfulQA (0-shot)   | 38.76   |
| Winogrande (5-shot)   | 52.8   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 5.53         |