--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: phishing-binary-classification-bert results: [] datasets: - aisuko/phishing-binary-classification language: - en --- # phishing-binary-classification-bert This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on [aisuko/phishing-binary-classification](https://huggingface.co/datasets/aisuko/phishing-binary-classification) dataset. It achieves the following results on the evaluation set: - Loss: 0.4878 - Accuracy: 0.82 - Auc: 0.919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data [aisuko/phishing-binary-classification](https://huggingface.co/datasets/aisuko/phishing-binary-classification) dataset ## Training procedure Please check Kaggle notbebook [FT Google Bert for Binary Classification](https://www.kaggle.com/code/aisuko/ft-google-bert-for-binary-classification) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----:| | 0.6681 | 1.0 | 1250 | 0.6198 | 0.69 | 0.885 | | 0.6185 | 2.0 | 2500 | 0.5813 | 0.712 | 0.897 | | 0.5907 | 3.0 | 3750 | 0.5478 | 0.82 | 0.9 | | 0.5693 | 4.0 | 5000 | 0.5267 | 0.815 | 0.908 | | 0.5608 | 5.0 | 6250 | 0.5193 | 0.787 | 0.91 | | 0.5486 | 6.0 | 7500 | 0.5168 | 0.769 | 0.915 | | 0.5409 | 7.0 | 8750 | 0.5034 | 0.79 | 0.916 | | 0.5338 | 8.0 | 10000 | 0.5016 | 0.784 | 0.918 | | 0.5331 | 9.0 | 11250 | 0.4947 | 0.796 | 0.919 | | 0.5308 | 10.0 | 12500 | 0.4878 | 0.82 | 0.919 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0