Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1644.91 +/- 108.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:507e34a8667f4b7c17c19e88ef069a11c843623abff748698cb64826e20fb773
|
3 |
+
size 129335
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2b9094d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2b9094dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2b9094e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2b9094ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe2b9094f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe2b9099040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe2b90990d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2b9099160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe2b90991f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2b9099280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2b9099310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2b90993a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe2b9096180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674656269186222968,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2FqL2FuYWNvbmRhMy9lbnZzL0hGLURSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvYWovYW5hY29uZGEzL2VudnMvSEYtRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK7THj/4yjW+UfgmP7KIkT/VQUI/ARVUPyPbaD8EqKC+kIZlP4sAEruD13U+pLjIv/5oKT9L1W8/9JFbv2TzKz8Y7oY/salVPnNtAz8nIa88be0fP/LWvL5E2hI/kE/mPqeTZr9eAho/atK5PjZALj+/AgW/O5G+Pn3Blj6kJ8w/Ban/PuSTDz+b5wm/A2OKvpdkQ7/7nFM/AeuMvhpryD9S5bW+3zx1P1HwNz8ZiVs+brZyv091/D71oec+AkcTQHAp677bGVm/QqHgPccsLD6nk2a/XgIaP2rSuT42QC4/B8bCPy7Vij9zsjq/JU2YP9dDIkBm9pw/ncBvPxtll7+Mv2U/UD8evK1Xjr80Ina8LnXXP81clz/9v/U9ByT3PrPU1T4iU4I/k2ECP9ursTvD9re/hPWMPiEVlj8vDKC/p5Nmv14CGj9q0rk+NkAuPx+EpL4e9QI/EEIhPiZU4b7ebCo/5e1SP6rj7z7WhqA+8kthv2hOS7+rtak+hM+dPuVlpr8GuKk8AeVZv0k4Gb+ByKk+oAUmv8PPDj/qlym+c/Ygv/58hj85ZmW/7W4GP/kcjj9eAho/atK5Pv4MvL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADddC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0HwiPAAAAAA8Rv6/AAAAAD1MBTwAAAAAanvbPwAAAADdEPK9AAAAAF8X8z8AAAAAFppvvQAAAAAHC9m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2dRmtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNId7j0AAAAA0KPovwAAAABVPvu9AAAAAN+u5D8AAAAAf1UtPAAAAAAsbP8/AAAAAG8ol70AAAAAxbL4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAITsoTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQYg++AAAAACff9b8AAAAAPjdnPQAAAADZhOM/AAAAAMjsFT0AAAAA6eLiPwAAAACkKgY9AAAAAGjI7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF5Pu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqiYDPgAAAABP7PO/AAAAAGMlz70AAAAAYIHiPwAAAADi8DA9AAAAACYeAUAAAAAA5dYMPgAAAABL2+S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUZuJYT0xyMAWyUTegDjAF0lEdAoNNZvNu+AXV9lChoBkdAldakqx1PnGgHTegDaAhHQKDXJmknCwd1fZQoaAZHQJCNVjCpFThoB03oA2gIR0Cg2E4wh4dIdX2UKGgGR0CSXLF9roGIaAdN6ANoCEdAoNj+D6Fds3V9lChoBkdAkNZWnn+yaGgHTegDaAhHQKDcbhaTwDx1fZQoaAZHQJGsNl7MPjJoB03oA2gIR0Cg4FdrXUYsdX2UKGgGR0CMNu9WZJCjaAdN6ANoCEdAoOGCosI3SHV9lChoBkdAj5y+4kNWl2gHTegDaAhHQKDiNqASWZ91fZQoaAZHQI2q3TG5tnBoB03oA2gIR0Cg5auM+/xldX2UKGgGR0CVa7HXEqDsaAdN6ANoCEdAoOmRC8e0X3V9lChoBkdAlHGGthd+omgHTegDaAhHQKDqvLNfPX11fZQoaAZHQJTQkuK4x1xoB03oA2gIR0Cg623GXHBDdX2UKGgGR0CStAzJp35faAdN6ANoCEdAoO7oEIPbwnV9lChoBkdAlA28P8Q7LmgHTegDaAhHQKDyxj94u9R1fZQoaAZHQJWRnmQr+YNoB03oA2gIR0Cg8++cx0uEdX2UKGgGR0CWFx9hqj8DaAdN6ANoCEdAoPSeeg+Ql3V9lChoBkdAlpIbIxQBP2gHTegDaAhHQKD4A/NZ/1B1fZQoaAZHQJcauCyyD7JoB03oA2gIR0Cg+9Wwu/UOdX2UKGgGR0CT0VCUHIIXaAdN6ANoCEdAoPz6po9LYnV9lChoBkdAk8whCMPz4GgHTegDaAhHQKD9q2jO9nN1fZQoaAZHQJKAWdf9gndoB03oA2gIR0ChAR3pnpSrdX2UKGgGR0CVgWlK9PDYaAdN6ANoCEdAoQT5xFRYR3V9lChoBkdAkWoXmFJxvWgHTegDaAhHQKEGIZ0CA+Z1fZQoaAZHQJST9qIrOJNoB03oA2gIR0ChBtHuAqd6dX2UKGgGR0CSwjHbypaSaAdN6ANoCEdAoQpEcQyylnV9lChoBkdAjIP5cTrVv2gHTegDaAhHQKEOM20AtFt1fZQoaAZHQJJ49+7UXpJoB03oA2gIR0ChD12OAAhjdX2UKGgGR0CMQzwH7gsLaAdN6ANoCEdAoRAPF1jiGXV9lChoBkdAjQyI9LYf4mgHTegDaAhHQKETgAVfu1F1fZQoaAZHQI4L/YraufVoB03oA2gIR0ChF2TUZvUCdX2UKGgGR0CNjhrnkkrxaAdN6ANoCEdAoRiRDmbLEHV9lChoBkdAiUF7Hhjvu2gHTegDaAhHQKEZQQRwqAl1fZQoaAZHQJFBpCE6DGtoB03oA2gIR0ChHLMzVMEidX2UKGgGR0CVGmDDjzZpaAdN6ANoCEdAoSCai48U23V9lChoBkdAjx0loUSIxmgHTegDaAhHQKEhycOLBKt1fZQoaAZHQJWmhdQfp2VoB03oA2gIR0ChInz3Zf2LdX2UKGgGR0CVt/jZL7GeaAdN6ANoCEdAoSYD/uLJjnV9lChoBkdAkb8fl6qsEWgHTegDaAhHQKEp3uBtk4F1fZQoaAZHQJL1bO1OTJRoB03oA2gIR0ChKwjDKoycdX2UKGgGR0CWodlN1yNoaAdN6ANoCEdAoSu435vcanV9lChoBkdAlR+V23azvGgHTegDaAhHQKEvL9cbBGh1fZQoaAZHQJYwVPznRsxoB03oA2gIR0ChMxWhAWzodX2UKGgGR0CV3L9L6DXfaAdN6ANoCEdAoTQ8mnfl63V9lChoBkdAkZJ2hAWznmgHTegDaAhHQKE065BkZrJ1fZQoaAZHQJYhYDq4YrJoB03oA2gIR0ChOGEDp1RtdX2UKGgGR0CWirOLBKtgaAdN6ANoCEdAoTxNLL6k7HV9lChoBkdAmLt+WSlnAmgHTegDaAhHQKE9eEW69TR1fZQoaAZHQJgL9VOsT39oB03oA2gIR0ChPikrPMSsdX2UKGgGR0CWFgiiqQzUaAdN6ANoCEdAoUGnfVI7NnV9lChoBkdAlv986/7BPGgHTegDaAhHQKFFhN+so2J1fZQoaAZHQJnAREofCANoB03oA2gIR0ChRrSKFZgYdX2UKGgGR0CZ0hDmbLEDaAdN6ANoCEdAoUdiVW0Z33V9lChoBkdAmO11+d9Uj2gHTegDaAhHQKFK2qWC2+h1fZQoaAZHQJeaH5TIeYFoB03oA2gIR0ChTq+bExZddX2UKGgGR0CYS/BO58SgaAdN6ANoCEdAoU/aoCMglnV9lChoBkdAlYS1Z9uxbGgHTegDaAhHQKFQjfdhy811fZQoaAZHQJicyqR2bG5oB03oA2gIR0ChVAFsxfv4dX2UKGgGR0CUEtMm4RVZaAdN6ANoCEdAoVfSFj/dZnV9lChoBkdAlNq8C9ytFWgHTegDaAhHQKFY+YgJTl11fZQoaAZHQJXPVajesPtoB03oA2gIR0ChWaruIAOsdX2UKGgGR0CWJqmBOHnEaAdN6ANoCEdAoV0RBX0Xg3V9lChoBkdAlhF94qwyI2gHTegDaAhHQKFg66FuejF1fZQoaAZHQJcP7ai9IwxoB03oA2gIR0ChYhQFTvRadX2UKGgGR0CVRLVKPGQ0aAdN6ANoCEdAoWLF23azvHV9lChoBkdAlRxbpA2Q4mgHTegDaAhHQKFmNoX9BKN1fZQoaAZHQJcuDOjZcs1oB03oA2gIR0ChafeGGmDUdX2UKGgGR0CXQrCGetjkaAdN6ANoCEdAoWsTbL2YfHV9lChoBkdAljEcCxNZeWgHTegDaAhHQKFruuyu6mR1fZQoaAZHQJhGle+mFaloB03oA2gIR0ChbyatT1kEdX2UKGgGR0CY6uw/PgNxaAdN6ANoCEdAoXLxVn27F3V9lChoBkdAmUpZRfnfVWgHTegDaAhHQKF0Grp7kXF1fZQoaAZHQJmq1eIEbHZoB03oA2gIR0ChdMpBHCoCdX2UKGgGR0CahctVaOghaAdN6ANoCEdAoXg/9LpRoHV9lChoBkdAmXYp++dsi2gHTegDaAhHQKF8GcRUWEd1fZQoaAZHQJp1HKifxtpoB03oA2gIR0ChfT74Ju2rdX2UKGgGR0CaFV5rxiG4aAdN6ANoCEdAoX3tMwlByHV9lChoBkdAnK7iVfNRnGgHTegDaAhHQKGBQ/nGKht1fZQoaAZHQJoxQPvrnkloB03oA2gIR0ChhRi/wiJPdX2UKGgGR0CaktposZpBaAdN6ANoCEdAoYY8HGCI13V9lChoBkdAm9l37UG3WmgHTegDaAhHQKGG5YvnKW91fZQoaAZHQJxQiZLIxQBoB03oA2gIR0ChikcrqdH2dX2UKGgGR0Ca1/xyXD3uaAdN6ANoCEdAoY5MrPMSsnV9lChoBkdAmcQ6e5Fw1mgHTegDaAhHQKGPctWdVed1fZQoaAZHQJsLrtzCDVZoB03oA2gIR0ChkByy2QXAdX2UKGgGR0CXDYaa1Cw9aAdN6ANoCEdAoZN1wPy08nV9lChoBkdAmyHy1iONpGgHTegDaAhHQKGXNqUu+RJ1fZQoaAZHQJxhd9KEnLJoB03oA2gIR0ChmFcUdq+KdX2UKGgGR0CZddeenQ6ZaAdN6ANoCEdAoZkBdnkDIXV9lChoBkdAmVrW6oVEeGgHTegDaAhHQKGcVlq8Djl1fZQoaAZHQJxScaCL/CJoB03oA2gIR0ChoCcL8aXKdX2UKGgGR0CZcDvkzXSSaAdN6ANoCEdAoaFRu89Oh3V9lChoBkdAm/h02gnMMmgHTegDaAhHQKGiAR2bG3p1fZQoaAZHQJucr8HfMwFoB03oA2gIR0ChpXOkLx7RdX2UKGgGR0CbmtDm8ujAaAdN6ANoCEdAoalO29cry3V9lChoBkdAlsaWfK6nSGgHTegDaAhHQKGqekt29td1fZQoaAZHQJp2lNsWO6xoB03oA2gIR0ChqymDUVi4dX2UKGgGR0CaLnNn5BToaAdN6ANoCEdAoa6M0HhS+HV9lChoBkdAmpCXzcynDWgHTegDaAhHQKGydvd/J/51fZQoaAZHQJpI9BPbfxdoB03oA2gIR0Chs6GaQV9GdX2UKGgGR0CaJdCngpBpaAdN6ANoCEdAobRPgxagVXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eed6b7013f6d21d8e04d08ff17c6268d50860a022266893de1950f20891752f5
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:052ad24f70acc34a86a119aaf0ab74020888667f463e357322ea96530c9afcb2
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2b9094d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2b9094dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2b9094e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2b9094ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fe2b9094f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2b9099040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe2b90990d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2b9099160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2b90991f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2b9099280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2b9099310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2b90993a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2b9096180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674656269186222968, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2FqL2FuYWNvbmRhMy9lbnZzL0hGLURSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvYWovYW5hY29uZGEzL2VudnMvSEYtRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK7THj/4yjW+UfgmP7KIkT/VQUI/ARVUPyPbaD8EqKC+kIZlP4sAEruD13U+pLjIv/5oKT9L1W8/9JFbv2TzKz8Y7oY/salVPnNtAz8nIa88be0fP/LWvL5E2hI/kE/mPqeTZr9eAho/atK5PjZALj+/AgW/O5G+Pn3Blj6kJ8w/Ban/PuSTDz+b5wm/A2OKvpdkQ7/7nFM/AeuMvhpryD9S5bW+3zx1P1HwNz8ZiVs+brZyv091/D71oec+AkcTQHAp677bGVm/QqHgPccsLD6nk2a/XgIaP2rSuT42QC4/B8bCPy7Vij9zsjq/JU2YP9dDIkBm9pw/ncBvPxtll7+Mv2U/UD8evK1Xjr80Ina8LnXXP81clz/9v/U9ByT3PrPU1T4iU4I/k2ECP9ursTvD9re/hPWMPiEVlj8vDKC/p5Nmv14CGj9q0rk+NkAuPx+EpL4e9QI/EEIhPiZU4b7ebCo/5e1SP6rj7z7WhqA+8kthv2hOS7+rtak+hM+dPuVlpr8GuKk8AeVZv0k4Gb+ByKk+oAUmv8PPDj/qlym+c/Ygv/58hj85ZmW/7W4GP/kcjj9eAho/atK5Pv4MvL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADddC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0HwiPAAAAAA8Rv6/AAAAAD1MBTwAAAAAanvbPwAAAADdEPK9AAAAAF8X8z8AAAAAFppvvQAAAAAHC9m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2dRmtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNId7j0AAAAA0KPovwAAAABVPvu9AAAAAN+u5D8AAAAAf1UtPAAAAAAsbP8/AAAAAG8ol70AAAAAxbL4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAITsoTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQYg++AAAAACff9b8AAAAAPjdnPQAAAADZhOM/AAAAAMjsFT0AAAAA6eLiPwAAAACkKgY9AAAAAGjI7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF5Pu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqiYDPgAAAABP7PO/AAAAAGMlz70AAAAAYIHiPwAAAADi8DA9AAAAACYeAUAAAAAA5dYMPgAAAABL2+S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUZuJYT0xyMAWyUTegDjAF0lEdAoNNZvNu+AXV9lChoBkdAldakqx1PnGgHTegDaAhHQKDXJmknCwd1fZQoaAZHQJCNVjCpFThoB03oA2gIR0Cg2E4wh4dIdX2UKGgGR0CSXLF9roGIaAdN6ANoCEdAoNj+D6Fds3V9lChoBkdAkNZWnn+yaGgHTegDaAhHQKDcbhaTwDx1fZQoaAZHQJGsNl7MPjJoB03oA2gIR0Cg4FdrXUYsdX2UKGgGR0CMNu9WZJCjaAdN6ANoCEdAoOGCosI3SHV9lChoBkdAj5y+4kNWl2gHTegDaAhHQKDiNqASWZ91fZQoaAZHQI2q3TG5tnBoB03oA2gIR0Cg5auM+/xldX2UKGgGR0CVa7HXEqDsaAdN6ANoCEdAoOmRC8e0X3V9lChoBkdAlHGGthd+omgHTegDaAhHQKDqvLNfPX11fZQoaAZHQJTQkuK4x1xoB03oA2gIR0Cg623GXHBDdX2UKGgGR0CStAzJp35faAdN6ANoCEdAoO7oEIPbwnV9lChoBkdAlA28P8Q7LmgHTegDaAhHQKDyxj94u9R1fZQoaAZHQJWRnmQr+YNoB03oA2gIR0Cg8++cx0uEdX2UKGgGR0CWFx9hqj8DaAdN6ANoCEdAoPSeeg+Ql3V9lChoBkdAlpIbIxQBP2gHTegDaAhHQKD4A/NZ/1B1fZQoaAZHQJcauCyyD7JoB03oA2gIR0Cg+9Wwu/UOdX2UKGgGR0CT0VCUHIIXaAdN6ANoCEdAoPz6po9LYnV9lChoBkdAk8whCMPz4GgHTegDaAhHQKD9q2jO9nN1fZQoaAZHQJKAWdf9gndoB03oA2gIR0ChAR3pnpSrdX2UKGgGR0CVgWlK9PDYaAdN6ANoCEdAoQT5xFRYR3V9lChoBkdAkWoXmFJxvWgHTegDaAhHQKEGIZ0CA+Z1fZQoaAZHQJST9qIrOJNoB03oA2gIR0ChBtHuAqd6dX2UKGgGR0CSwjHbypaSaAdN6ANoCEdAoQpEcQyylnV9lChoBkdAjIP5cTrVv2gHTegDaAhHQKEOM20AtFt1fZQoaAZHQJJ49+7UXpJoB03oA2gIR0ChD12OAAhjdX2UKGgGR0CMQzwH7gsLaAdN6ANoCEdAoRAPF1jiGXV9lChoBkdAjQyI9LYf4mgHTegDaAhHQKETgAVfu1F1fZQoaAZHQI4L/YraufVoB03oA2gIR0ChF2TUZvUCdX2UKGgGR0CNjhrnkkrxaAdN6ANoCEdAoRiRDmbLEHV9lChoBkdAiUF7Hhjvu2gHTegDaAhHQKEZQQRwqAl1fZQoaAZHQJFBpCE6DGtoB03oA2gIR0ChHLMzVMEidX2UKGgGR0CVGmDDjzZpaAdN6ANoCEdAoSCai48U23V9lChoBkdAjx0loUSIxmgHTegDaAhHQKEhycOLBKt1fZQoaAZHQJWmhdQfp2VoB03oA2gIR0ChInz3Zf2LdX2UKGgGR0CVt/jZL7GeaAdN6ANoCEdAoSYD/uLJjnV9lChoBkdAkb8fl6qsEWgHTegDaAhHQKEp3uBtk4F1fZQoaAZHQJL1bO1OTJRoB03oA2gIR0ChKwjDKoycdX2UKGgGR0CWodlN1yNoaAdN6ANoCEdAoSu435vcanV9lChoBkdAlR+V23azvGgHTegDaAhHQKEvL9cbBGh1fZQoaAZHQJYwVPznRsxoB03oA2gIR0ChMxWhAWzodX2UKGgGR0CV3L9L6DXfaAdN6ANoCEdAoTQ8mnfl63V9lChoBkdAkZJ2hAWznmgHTegDaAhHQKE065BkZrJ1fZQoaAZHQJYhYDq4YrJoB03oA2gIR0ChOGEDp1RtdX2UKGgGR0CWirOLBKtgaAdN6ANoCEdAoTxNLL6k7HV9lChoBkdAmLt+WSlnAmgHTegDaAhHQKE9eEW69TR1fZQoaAZHQJgL9VOsT39oB03oA2gIR0ChPikrPMSsdX2UKGgGR0CWFgiiqQzUaAdN6ANoCEdAoUGnfVI7NnV9lChoBkdAlv986/7BPGgHTegDaAhHQKFFhN+so2J1fZQoaAZHQJnAREofCANoB03oA2gIR0ChRrSKFZgYdX2UKGgGR0CZ0hDmbLEDaAdN6ANoCEdAoUdiVW0Z33V9lChoBkdAmO11+d9Uj2gHTegDaAhHQKFK2qWC2+h1fZQoaAZHQJeaH5TIeYFoB03oA2gIR0ChTq+bExZddX2UKGgGR0CYS/BO58SgaAdN6ANoCEdAoU/aoCMglnV9lChoBkdAlYS1Z9uxbGgHTegDaAhHQKFQjfdhy811fZQoaAZHQJicyqR2bG5oB03oA2gIR0ChVAFsxfv4dX2UKGgGR0CUEtMm4RVZaAdN6ANoCEdAoVfSFj/dZnV9lChoBkdAlNq8C9ytFWgHTegDaAhHQKFY+YgJTl11fZQoaAZHQJXPVajesPtoB03oA2gIR0ChWaruIAOsdX2UKGgGR0CWJqmBOHnEaAdN6ANoCEdAoV0RBX0Xg3V9lChoBkdAlhF94qwyI2gHTegDaAhHQKFg66FuejF1fZQoaAZHQJcP7ai9IwxoB03oA2gIR0ChYhQFTvRadX2UKGgGR0CVRLVKPGQ0aAdN6ANoCEdAoWLF23azvHV9lChoBkdAlRxbpA2Q4mgHTegDaAhHQKFmNoX9BKN1fZQoaAZHQJcuDOjZcs1oB03oA2gIR0ChafeGGmDUdX2UKGgGR0CXQrCGetjkaAdN6ANoCEdAoWsTbL2YfHV9lChoBkdAljEcCxNZeWgHTegDaAhHQKFruuyu6mR1fZQoaAZHQJhGle+mFaloB03oA2gIR0ChbyatT1kEdX2UKGgGR0CY6uw/PgNxaAdN6ANoCEdAoXLxVn27F3V9lChoBkdAmUpZRfnfVWgHTegDaAhHQKF0Grp7kXF1fZQoaAZHQJmq1eIEbHZoB03oA2gIR0ChdMpBHCoCdX2UKGgGR0CahctVaOghaAdN6ANoCEdAoXg/9LpRoHV9lChoBkdAmXYp++dsi2gHTegDaAhHQKF8GcRUWEd1fZQoaAZHQJp1HKifxtpoB03oA2gIR0ChfT74Ju2rdX2UKGgGR0CaFV5rxiG4aAdN6ANoCEdAoX3tMwlByHV9lChoBkdAnK7iVfNRnGgHTegDaAhHQKGBQ/nGKht1fZQoaAZHQJoxQPvrnkloB03oA2gIR0ChhRi/wiJPdX2UKGgGR0CaktposZpBaAdN6ANoCEdAoYY8HGCI13V9lChoBkdAm9l37UG3WmgHTegDaAhHQKGG5YvnKW91fZQoaAZHQJxQiZLIxQBoB03oA2gIR0ChikcrqdH2dX2UKGgGR0Ca1/xyXD3uaAdN6ANoCEdAoY5MrPMSsnV9lChoBkdAmcQ6e5Fw1mgHTegDaAhHQKGPctWdVed1fZQoaAZHQJsLrtzCDVZoB03oA2gIR0ChkByy2QXAdX2UKGgGR0CXDYaa1Cw9aAdN6ANoCEdAoZN1wPy08nV9lChoBkdAmyHy1iONpGgHTegDaAhHQKGXNqUu+RJ1fZQoaAZHQJxhd9KEnLJoB03oA2gIR0ChmFcUdq+KdX2UKGgGR0CZddeenQ6ZaAdN6ANoCEdAoZkBdnkDIXV9lChoBkdAmVrW6oVEeGgHTegDaAhHQKGcVlq8Djl1fZQoaAZHQJxScaCL/CJoB03oA2gIR0ChoCcL8aXKdX2UKGgGR0CZcDvkzXSSaAdN6ANoCEdAoaFRu89Oh3V9lChoBkdAm/h02gnMMmgHTegDaAhHQKGiAR2bG3p1fZQoaAZHQJucr8HfMwFoB03oA2gIR0ChpXOkLx7RdX2UKGgGR0CbmtDm8ujAaAdN6ANoCEdAoalO29cry3V9lChoBkdAlsaWfK6nSGgHTegDaAhHQKGqekt29td1fZQoaAZHQJp2lNsWO6xoB03oA2gIR0ChqymDUVi4dX2UKGgGR0CaLnNn5BToaAdN6ANoCEdAoa6M0HhS+HV9lChoBkdAmpCXzcynDWgHTegDaAhHQKGydvd/J/51fZQoaAZHQJpI9BPbfxdoB03oA2gIR0Chs6GaQV9GdX2UKGgGR0CaJdCngpBpaAdN6ANoCEdAobRPgxagVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1644.9062462645002, "std_reward": 108.07187014360485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T15:56:04.097505"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e68a76f34fd25bf69a1cc689d358f344348569e146b5262fbd0d155434ab0e6
|
3 |
+
size 2136
|