ajibawa-2023
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,7 @@ tags:
|
|
10 |
- conversational
|
11 |
datasets:
|
12 |
- ajibawa-2023/OpenHermes-2.5-Code-290k
|
|
|
13 |
model-index:
|
14 |
- name: OpenHermes-2.5-Code-290k-13B
|
15 |
results:
|
@@ -28,7 +29,8 @@ model-index:
|
|
28 |
value: 57.34
|
29 |
name: normalized accuracy
|
30 |
source:
|
31 |
-
url:
|
|
|
32 |
name: Open LLM Leaderboard
|
33 |
- task:
|
34 |
type: text-generation
|
@@ -44,7 +46,8 @@ model-index:
|
|
44 |
value: 80.48
|
45 |
name: normalized accuracy
|
46 |
source:
|
47 |
-
url:
|
|
|
48 |
name: Open LLM Leaderboard
|
49 |
- task:
|
50 |
type: text-generation
|
@@ -61,7 +64,8 @@ model-index:
|
|
61 |
value: 56.53
|
62 |
name: accuracy
|
63 |
source:
|
64 |
-
url:
|
|
|
65 |
name: Open LLM Leaderboard
|
66 |
- task:
|
67 |
type: text-generation
|
@@ -77,7 +81,8 @@ model-index:
|
|
77 |
- type: mc2
|
78 |
value: 52.5
|
79 |
source:
|
80 |
-
url:
|
|
|
81 |
name: Open LLM Leaderboard
|
82 |
- task:
|
83 |
type: text-generation
|
@@ -94,7 +99,8 @@ model-index:
|
|
94 |
value: 74.82
|
95 |
name: accuracy
|
96 |
source:
|
97 |
-
url:
|
|
|
98 |
name: Open LLM Leaderboard
|
99 |
- task:
|
100 |
type: text-generation
|
@@ -111,13 +117,15 @@ model-index:
|
|
111 |
value: 58.3
|
112 |
name: accuracy
|
113 |
source:
|
114 |
-
url:
|
|
|
115 |
name: Open LLM Leaderboard
|
116 |
---
|
117 |
|
118 |
**OpenHermes-2.5-Code-290k-13B**
|
119 |
|
120 |
OpenHermes-2.5-Code-290k-13B is a state of the art Llama-2 Fine-tune, which is trained on additional code dataset.
|
|
|
121 |
This model is trained on my existing dataset [OpenHermes-2.5-Code-290k](https://huggingface.co/datasets/ajibawa-2023/OpenHermes-2.5-Code-290k).
|
122 |
This dataset is amalgamation of two datasets. I have used [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) a super quality dataset made avaliable by teknium. Other datset is my own [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT).
|
123 |
Dataset is in Vicuna/ShareGPT format. There are around **1.29 million** set of conversations. I have cleaned the dataset provided by Teknium and removed metadata such as "source" & "category" etc. This dataset has primarily synthetically generated instruction and chat samples.
|
@@ -179,5 +187,4 @@ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-le
|
|
179 |
|MMLU (5-Shot) |56.53|
|
180 |
|TruthfulQA (0-shot) |52.50|
|
181 |
|Winogrande (5-shot) |74.82|
|
182 |
-
|GSM8k (5-shot) |58.30|
|
183 |
-
|
|
|
10 |
- conversational
|
11 |
datasets:
|
12 |
- ajibawa-2023/OpenHermes-2.5-Code-290k
|
13 |
+
- teknium/OpenHermes-2.5
|
14 |
model-index:
|
15 |
- name: OpenHermes-2.5-Code-290k-13B
|
16 |
results:
|
|
|
29 |
value: 57.34
|
30 |
name: normalized accuracy
|
31 |
source:
|
32 |
+
url: >-
|
33 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
34 |
name: Open LLM Leaderboard
|
35 |
- task:
|
36 |
type: text-generation
|
|
|
46 |
value: 80.48
|
47 |
name: normalized accuracy
|
48 |
source:
|
49 |
+
url: >-
|
50 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
51 |
name: Open LLM Leaderboard
|
52 |
- task:
|
53 |
type: text-generation
|
|
|
64 |
value: 56.53
|
65 |
name: accuracy
|
66 |
source:
|
67 |
+
url: >-
|
68 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
69 |
name: Open LLM Leaderboard
|
70 |
- task:
|
71 |
type: text-generation
|
|
|
81 |
- type: mc2
|
82 |
value: 52.5
|
83 |
source:
|
84 |
+
url: >-
|
85 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
86 |
name: Open LLM Leaderboard
|
87 |
- task:
|
88 |
type: text-generation
|
|
|
99 |
value: 74.82
|
100 |
name: accuracy
|
101 |
source:
|
102 |
+
url: >-
|
103 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
104 |
name: Open LLM Leaderboard
|
105 |
- task:
|
106 |
type: text-generation
|
|
|
117 |
value: 58.3
|
118 |
name: accuracy
|
119 |
source:
|
120 |
+
url: >-
|
121 |
+
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
|
122 |
name: Open LLM Leaderboard
|
123 |
---
|
124 |
|
125 |
**OpenHermes-2.5-Code-290k-13B**
|
126 |
|
127 |
OpenHermes-2.5-Code-290k-13B is a state of the art Llama-2 Fine-tune, which is trained on additional code dataset.
|
128 |
+
This Model is much better than teknium's [model](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). You can check the **Eval results** below.
|
129 |
This model is trained on my existing dataset [OpenHermes-2.5-Code-290k](https://huggingface.co/datasets/ajibawa-2023/OpenHermes-2.5-Code-290k).
|
130 |
This dataset is amalgamation of two datasets. I have used [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) a super quality dataset made avaliable by teknium. Other datset is my own [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT).
|
131 |
Dataset is in Vicuna/ShareGPT format. There are around **1.29 million** set of conversations. I have cleaned the dataset provided by Teknium and removed metadata such as "source" & "category" etc. This dataset has primarily synthetically generated instruction and chat samples.
|
|
|
187 |
|MMLU (5-Shot) |56.53|
|
188 |
|TruthfulQA (0-shot) |52.50|
|
189 |
|Winogrande (5-shot) |74.82|
|
190 |
+
|GSM8k (5-shot) |58.30|
|
|