Anxiety_binary / README.md
ajrayman's picture
Training in progress, epoch 1
47d2dbd verified
|
raw
history blame
1.72 kB
---
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: PuritySanctity_binary
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PuritySanctity_binary
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6174
- Accuracy: 0.6904
- Precision: 0.6805
- Recall: 0.7273
- F1: 0.7031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 123 | 0.6316 | 0.6548 | 0.6182 | 0.8242 | 0.7065 |
| No log | 2.0 | 246 | 0.6060 | 0.6843 | 0.6782 | 0.7111 | 0.6943 |
| No log | 3.0 | 369 | 0.6174 | 0.6904 | 0.6805 | 0.7273 | 0.7031 |
### Framework versions
- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.12.0
- Tokenizers 0.19.1