--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: PuritySanctity_binary results: [] --- # PuritySanctity_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6174 - Accuracy: 0.6904 - Precision: 0.6805 - Recall: 0.7273 - F1: 0.7031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 123 | 0.6316 | 0.6548 | 0.6182 | 0.8242 | 0.7065 | | No log | 2.0 | 246 | 0.6060 | 0.6843 | 0.6782 | 0.7111 | 0.6943 | | No log | 3.0 | 369 | 0.6174 | 0.6904 | 0.6805 | 0.7273 | 0.7031 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1