--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Neuro_binary results: [] --- # Neuro_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5902 - Accuracy: 0.7358 - Precision: 0.7767 - Recall: 0.7030 - F1: 0.7380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 135 | 0.5537 | 0.7247 | 0.7349 | 0.7504 | 0.7426 | | No log | 2.0 | 270 | 0.5325 | 0.7312 | 0.8070 | 0.6467 | 0.7180 | | No log | 3.0 | 405 | 0.5902 | 0.7358 | 0.7767 | 0.7030 | 0.7380 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1