--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Imagination_binary results: [] --- # Imagination_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6415 - Accuracy: 0.6446 - Precision: 0.6859 - Recall: 0.5161 - F1: 0.5890 - Auc: 0.6429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.0 | 134 | 0.6696 | 0.5756 | 0.5467 | 0.8185 | 0.6556 | 0.5787 | | No log | 2.0 | 268 | 0.6415 | 0.6446 | 0.6859 | 0.5161 | 0.5890 | 0.6429 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1