--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Immoderation_binary results: [] --- # Immoderation_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7206 - Accuracy: 0.5942 - Precision: 0.5984 - Recall: 0.5545 - F1: 0.5756 - Auc: 0.5939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.0 | 134 | 0.6935 | 0.5243 | 0.7895 | 0.0564 | 0.1053 | 0.5208 | | No log | 2.0 | 268 | 0.6717 | 0.5979 | 0.6188 | 0.4944 | 0.5496 | 0.5972 | | No log | 3.0 | 402 | 0.7206 | 0.5942 | 0.5984 | 0.5545 | 0.5756 | 0.5939 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1