File size: 1,776 Bytes
f50199f
 
 
 
 
 
 
 
 
 
 
 
c295ff7
f50199f
 
 
 
 
 
c295ff7
f50199f
 
 
c295ff7
 
 
 
 
 
f50199f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f0390
 
c295ff7
 
 
f50199f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: IngroupLoyalty_binary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IngroupLoyalty_binary

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6927
- Accuracy: 0.6690
- Precision: 0.6752
- Recall: 0.7010
- F1: 0.6879
- Auc: 0.6676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 1.0   | 127  | 0.6813          | 0.6601   | 0.7333    | 0.5448 | 0.6251 | 0.6649 |
| No log        | 2.0   | 254  | 0.6369          | 0.6868   | 0.6683    | 0.7905 | 0.7243 | 0.6824 |
| No log        | 3.0   | 381  | 0.6927          | 0.6690   | 0.6752    | 0.7010 | 0.6879 | 0.6676 |


### Framework versions

- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.12.0
- Tokenizers 0.19.1