--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Self_Efficacy_binary results: [] --- # Self_Efficacy_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6822 - Accuracy: 0.6468 - Precision: 0.6816 - Recall: 0.5996 - F1: 0.6380 - Auc: 0.6487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.0 | 134 | 0.6634 | 0.6132 | 0.6849 | 0.4722 | 0.5590 | 0.6188 | | No log | 2.0 | 268 | 0.6410 | 0.6393 | 0.6714 | 0.5978 | 0.6325 | 0.6410 | | No log | 3.0 | 402 | 0.6822 | 0.6468 | 0.6816 | 0.5996 | 0.6380 | 0.6487 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1