--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: auth_scale_binary results: [] --- # auth_scale_binary This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6696 - Accuracy: 0.7269 - Precision: 0.7201 - Recall: 0.7350 - F1: 0.7274 - Auc: 0.7270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 1.0 | 135 | 0.5686 | 0.7185 | 0.6742 | 0.8365 | 0.7466 | 0.7195 | | No log | 2.0 | 270 | 0.6582 | 0.6887 | 0.7845 | 0.5132 | 0.6205 | 0.6873 | | No log | 3.0 | 405 | 0.6696 | 0.7269 | 0.7201 | 0.7350 | 0.7274 | 0.7270 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1