akahana commited on
Commit
5ae3b1c
1 Parent(s): 77a9922

mnist-mobilevit

Browse files
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: apple/mobilevit-xx-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: mnist-mobilevit
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mnist-mobilevit
17
+
18
+ This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0185
21
+ - Accuracy: 0.9929
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0008
41
+ - train_batch_size: 128
42
+ - eval_batch_size: 128
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
53
+ | 0.026 | 0.2132 | 100 | 0.0458 | 0.9867 |
54
+ | 0.0232 | 0.4264 | 200 | 0.0453 | 0.9867 |
55
+ | 0.0277 | 0.6397 | 300 | 0.0484 | 0.9863 |
56
+ | 0.0293 | 0.8529 | 400 | 0.0469 | 0.9865 |
57
+ | 0.0235 | 1.0661 | 500 | 0.0288 | 0.9899 |
58
+ | 0.0203 | 1.2793 | 600 | 0.0253 | 0.9924 |
59
+ | 0.0182 | 1.4925 | 700 | 0.0286 | 0.9916 |
60
+ | 0.0205 | 1.7058 | 800 | 0.0203 | 0.9935 |
61
+ | 0.0162 | 1.9190 | 900 | 0.0238 | 0.9913 |
62
+ | 0.0118 | 2.1322 | 1000 | 0.0247 | 0.9916 |
63
+ | 0.0121 | 2.3454 | 1100 | 0.0194 | 0.9932 |
64
+ | 0.0154 | 2.5586 | 1200 | 0.0194 | 0.9933 |
65
+ | 0.015 | 2.7719 | 1300 | 0.0216 | 0.9933 |
66
+ | 0.0145 | 2.9851 | 1400 | 0.0238 | 0.9919 |
67
+ | 0.0098 | 3.1983 | 1500 | 0.0208 | 0.993 |
68
+ | 0.0093 | 3.4115 | 1600 | 0.0218 | 0.9929 |
69
+ | 0.0073 | 3.6247 | 1700 | 0.0189 | 0.9933 |
70
+ | 0.008 | 3.8380 | 1800 | 0.0194 | 0.9932 |
71
+ | 0.006 | 4.0512 | 1900 | 0.0183 | 0.9938 |
72
+ | 0.0063 | 4.2644 | 2000 | 0.0184 | 0.9934 |
73
+ | 0.0043 | 4.4776 | 2100 | 0.0184 | 0.9932 |
74
+ | 0.0035 | 4.6908 | 2200 | 0.0183 | 0.9931 |
75
+ | 0.0061 | 4.9041 | 2300 | 0.0184 | 0.9931 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.42.4
81
+ - Pytorch 2.3.1+cu121
82
+ - Datasets 2.20.0
83
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9929,
4
+ "eval_loss": 0.018516644835472107,
5
+ "eval_runtime": 5.3033,
6
+ "eval_samples_per_second": 1885.618,
7
+ "eval_steps_per_second": 14.896,
8
+ "total_flos": 1346208595200000.0,
9
+ "train_loss": 0.014373551363121472,
10
+ "train_runtime": 335.5598,
11
+ "train_samples_per_second": 894.028,
12
+ "train_steps_per_second": 6.988
13
+ }
config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "apple/mobilevit-xx-small",
3
+ "architectures": [
4
+ "MobileViTForImageClassification"
5
+ ],
6
+ "aspp_dropout_prob": 0.1,
7
+ "aspp_out_channels": 256,
8
+ "atrous_rates": [
9
+ 6,
10
+ 12,
11
+ 18
12
+ ],
13
+ "attention_probs_dropout_prob": 0.0,
14
+ "classifier_dropout_prob": 0.1,
15
+ "conv_kernel_size": 3,
16
+ "expand_ratio": 2.0,
17
+ "hidden_act": "silu",
18
+ "hidden_dropout_prob": 0.05,
19
+ "hidden_sizes": [
20
+ 64,
21
+ 80,
22
+ 96
23
+ ],
24
+ "id2label": {
25
+ "0": "0",
26
+ "1": "1",
27
+ "2": "2",
28
+ "3": "3",
29
+ "4": "4",
30
+ "5": "5",
31
+ "6": "6",
32
+ "7": "7",
33
+ "8": "8",
34
+ "9": "9"
35
+ },
36
+ "image_size": 28,
37
+ "initializer_range": 0.02,
38
+ "label2id": {
39
+ "0": "0",
40
+ "1": "1",
41
+ "2": "2",
42
+ "3": "3",
43
+ "4": "4",
44
+ "5": "5",
45
+ "6": "6",
46
+ "7": "7",
47
+ "8": "8",
48
+ "9": "9"
49
+ },
50
+ "layer_norm_eps": 1e-05,
51
+ "mlp_ratio": 2.0,
52
+ "model_type": "mobilevit",
53
+ "neck_hidden_sizes": [
54
+ 16,
55
+ 16,
56
+ 24,
57
+ 48,
58
+ 64,
59
+ 80,
60
+ 320
61
+ ],
62
+ "num_attention_heads": 4,
63
+ "num_channels": 1,
64
+ "output_stride": 32,
65
+ "patch_size": 2,
66
+ "problem_type": "single_label_classification",
67
+ "qkv_bias": true,
68
+ "semantic_loss_ignore_index": 255,
69
+ "torch_dtype": "float32",
70
+ "transformers_version": "4.42.4"
71
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0119f9f34f9a51d5c21e72608ca4c85e344b686635be5105a81b7590e73a2b03
3
+ size 3878480
preprocessor_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 28,
4
+ "width": 28
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": false,
8
+ "do_flip_channel_order": false,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_processor_type": "MobileViTImageProcessor",
12
+ "resample": 2,
13
+ "rescale_factor": 0.00392156862745098,
14
+ "size": {
15
+ "shortest_edge": 28
16
+ }
17
+ }
test_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9929,
4
+ "eval_loss": 0.018516644835472107,
5
+ "eval_runtime": 5.3033,
6
+ "eval_samples_per_second": 1885.618,
7
+ "eval_steps_per_second": 14.896
8
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "total_flos": 1346208595200000.0,
4
+ "train_loss": 0.014373551363121472,
5
+ "train_runtime": 335.5598,
6
+ "train_samples_per_second": 894.028,
7
+ "train_steps_per_second": 6.988
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 100,
6
+ "global_step": 2345,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.21321961620469082,
13
+ "grad_norm": 1.6159120798110962,
14
+ "learning_rate": 0.0007658848614072496,
15
+ "loss": 0.026,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.21321961620469082,
20
+ "eval_accuracy": 0.9867,
21
+ "eval_loss": 0.04582102224230766,
22
+ "eval_runtime": 5.154,
23
+ "eval_samples_per_second": 1940.235,
24
+ "eval_steps_per_second": 15.328,
25
+ "step": 100
26
+ },
27
+ {
28
+ "epoch": 0.42643923240938164,
29
+ "grad_norm": 0.22664281725883484,
30
+ "learning_rate": 0.000731769722814499,
31
+ "loss": 0.0232,
32
+ "step": 200
33
+ },
34
+ {
35
+ "epoch": 0.42643923240938164,
36
+ "eval_accuracy": 0.9867,
37
+ "eval_loss": 0.04527696222066879,
38
+ "eval_runtime": 5.4041,
39
+ "eval_samples_per_second": 1850.446,
40
+ "eval_steps_per_second": 14.619,
41
+ "step": 200
42
+ },
43
+ {
44
+ "epoch": 0.6396588486140725,
45
+ "grad_norm": 1.3475489616394043,
46
+ "learning_rate": 0.0006976545842217485,
47
+ "loss": 0.0277,
48
+ "step": 300
49
+ },
50
+ {
51
+ "epoch": 0.6396588486140725,
52
+ "eval_accuracy": 0.9863,
53
+ "eval_loss": 0.04839787632226944,
54
+ "eval_runtime": 5.3353,
55
+ "eval_samples_per_second": 1874.323,
56
+ "eval_steps_per_second": 14.807,
57
+ "step": 300
58
+ },
59
+ {
60
+ "epoch": 0.8528784648187633,
61
+ "grad_norm": 0.9408140182495117,
62
+ "learning_rate": 0.0006635394456289979,
63
+ "loss": 0.0293,
64
+ "step": 400
65
+ },
66
+ {
67
+ "epoch": 0.8528784648187633,
68
+ "eval_accuracy": 0.9865,
69
+ "eval_loss": 0.046898942440748215,
70
+ "eval_runtime": 5.1935,
71
+ "eval_samples_per_second": 1925.498,
72
+ "eval_steps_per_second": 15.211,
73
+ "step": 400
74
+ },
75
+ {
76
+ "epoch": 1.0660980810234542,
77
+ "grad_norm": 0.6018700003623962,
78
+ "learning_rate": 0.0006294243070362473,
79
+ "loss": 0.0235,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 1.0660980810234542,
84
+ "eval_accuracy": 0.9899,
85
+ "eval_loss": 0.028819510713219643,
86
+ "eval_runtime": 5.1407,
87
+ "eval_samples_per_second": 1945.277,
88
+ "eval_steps_per_second": 15.368,
89
+ "step": 500
90
+ },
91
+ {
92
+ "epoch": 1.279317697228145,
93
+ "grad_norm": 0.7029837369918823,
94
+ "learning_rate": 0.0005953091684434968,
95
+ "loss": 0.0203,
96
+ "step": 600
97
+ },
98
+ {
99
+ "epoch": 1.279317697228145,
100
+ "eval_accuracy": 0.9924,
101
+ "eval_loss": 0.02526690438389778,
102
+ "eval_runtime": 4.869,
103
+ "eval_samples_per_second": 2053.81,
104
+ "eval_steps_per_second": 16.225,
105
+ "step": 600
106
+ },
107
+ {
108
+ "epoch": 1.4925373134328357,
109
+ "grad_norm": 0.17393378913402557,
110
+ "learning_rate": 0.0005611940298507463,
111
+ "loss": 0.0182,
112
+ "step": 700
113
+ },
114
+ {
115
+ "epoch": 1.4925373134328357,
116
+ "eval_accuracy": 0.9916,
117
+ "eval_loss": 0.028603948652744293,
118
+ "eval_runtime": 4.6847,
119
+ "eval_samples_per_second": 2134.586,
120
+ "eval_steps_per_second": 16.863,
121
+ "step": 700
122
+ },
123
+ {
124
+ "epoch": 1.7057569296375266,
125
+ "grad_norm": 0.9470173120498657,
126
+ "learning_rate": 0.0005270788912579957,
127
+ "loss": 0.0205,
128
+ "step": 800
129
+ },
130
+ {
131
+ "epoch": 1.7057569296375266,
132
+ "eval_accuracy": 0.9935,
133
+ "eval_loss": 0.02031560428440571,
134
+ "eval_runtime": 5.0835,
135
+ "eval_samples_per_second": 1967.155,
136
+ "eval_steps_per_second": 15.541,
137
+ "step": 800
138
+ },
139
+ {
140
+ "epoch": 1.9189765458422174,
141
+ "grad_norm": 1.4821853637695312,
142
+ "learning_rate": 0.0004929637526652453,
143
+ "loss": 0.0162,
144
+ "step": 900
145
+ },
146
+ {
147
+ "epoch": 1.9189765458422174,
148
+ "eval_accuracy": 0.9913,
149
+ "eval_loss": 0.023791342973709106,
150
+ "eval_runtime": 5.2196,
151
+ "eval_samples_per_second": 1915.863,
152
+ "eval_steps_per_second": 15.135,
153
+ "step": 900
154
+ },
155
+ {
156
+ "epoch": 2.1321961620469083,
157
+ "grad_norm": 1.0076653957366943,
158
+ "learning_rate": 0.0004588486140724947,
159
+ "loss": 0.0118,
160
+ "step": 1000
161
+ },
162
+ {
163
+ "epoch": 2.1321961620469083,
164
+ "eval_accuracy": 0.9916,
165
+ "eval_loss": 0.024731909856200218,
166
+ "eval_runtime": 5.8209,
167
+ "eval_samples_per_second": 1717.944,
168
+ "eval_steps_per_second": 13.572,
169
+ "step": 1000
170
+ },
171
+ {
172
+ "epoch": 2.345415778251599,
173
+ "grad_norm": 0.39255017042160034,
174
+ "learning_rate": 0.0004247334754797441,
175
+ "loss": 0.0121,
176
+ "step": 1100
177
+ },
178
+ {
179
+ "epoch": 2.345415778251599,
180
+ "eval_accuracy": 0.9932,
181
+ "eval_loss": 0.019426949322223663,
182
+ "eval_runtime": 5.5038,
183
+ "eval_samples_per_second": 1816.931,
184
+ "eval_steps_per_second": 14.354,
185
+ "step": 1100
186
+ },
187
+ {
188
+ "epoch": 2.55863539445629,
189
+ "grad_norm": 0.4671665132045746,
190
+ "learning_rate": 0.0003906183368869936,
191
+ "loss": 0.0154,
192
+ "step": 1200
193
+ },
194
+ {
195
+ "epoch": 2.55863539445629,
196
+ "eval_accuracy": 0.9933,
197
+ "eval_loss": 0.01936325989663601,
198
+ "eval_runtime": 5.4304,
199
+ "eval_samples_per_second": 1841.5,
200
+ "eval_steps_per_second": 14.548,
201
+ "step": 1200
202
+ },
203
+ {
204
+ "epoch": 2.771855010660981,
205
+ "grad_norm": 0.17253048717975616,
206
+ "learning_rate": 0.0003565031982942431,
207
+ "loss": 0.015,
208
+ "step": 1300
209
+ },
210
+ {
211
+ "epoch": 2.771855010660981,
212
+ "eval_accuracy": 0.9933,
213
+ "eval_loss": 0.02162059210240841,
214
+ "eval_runtime": 5.3729,
215
+ "eval_samples_per_second": 1861.177,
216
+ "eval_steps_per_second": 14.703,
217
+ "step": 1300
218
+ },
219
+ {
220
+ "epoch": 2.9850746268656714,
221
+ "grad_norm": 0.8343185782432556,
222
+ "learning_rate": 0.00032238805970149256,
223
+ "loss": 0.0145,
224
+ "step": 1400
225
+ },
226
+ {
227
+ "epoch": 2.9850746268656714,
228
+ "eval_accuracy": 0.9919,
229
+ "eval_loss": 0.02381654642522335,
230
+ "eval_runtime": 5.1099,
231
+ "eval_samples_per_second": 1957.0,
232
+ "eval_steps_per_second": 15.46,
233
+ "step": 1400
234
+ },
235
+ {
236
+ "epoch": 3.1982942430703627,
237
+ "grad_norm": 0.3106481432914734,
238
+ "learning_rate": 0.000288272921108742,
239
+ "loss": 0.0098,
240
+ "step": 1500
241
+ },
242
+ {
243
+ "epoch": 3.1982942430703627,
244
+ "eval_accuracy": 0.993,
245
+ "eval_loss": 0.020756520330905914,
246
+ "eval_runtime": 4.9767,
247
+ "eval_samples_per_second": 2009.353,
248
+ "eval_steps_per_second": 15.874,
249
+ "step": 1500
250
+ },
251
+ {
252
+ "epoch": 3.411513859275053,
253
+ "grad_norm": 0.03616774454712868,
254
+ "learning_rate": 0.0002541577825159915,
255
+ "loss": 0.0093,
256
+ "step": 1600
257
+ },
258
+ {
259
+ "epoch": 3.411513859275053,
260
+ "eval_accuracy": 0.9929,
261
+ "eval_loss": 0.021822581067681313,
262
+ "eval_runtime": 5.4965,
263
+ "eval_samples_per_second": 1819.356,
264
+ "eval_steps_per_second": 14.373,
265
+ "step": 1600
266
+ },
267
+ {
268
+ "epoch": 3.624733475479744,
269
+ "grad_norm": 0.6045345067977905,
270
+ "learning_rate": 0.00022004264392324095,
271
+ "loss": 0.0073,
272
+ "step": 1700
273
+ },
274
+ {
275
+ "epoch": 3.624733475479744,
276
+ "eval_accuracy": 0.9933,
277
+ "eval_loss": 0.018862707540392876,
278
+ "eval_runtime": 5.7766,
279
+ "eval_samples_per_second": 1731.12,
280
+ "eval_steps_per_second": 13.676,
281
+ "step": 1700
282
+ },
283
+ {
284
+ "epoch": 3.837953091684435,
285
+ "grad_norm": 0.631215512752533,
286
+ "learning_rate": 0.0001859275053304904,
287
+ "loss": 0.008,
288
+ "step": 1800
289
+ },
290
+ {
291
+ "epoch": 3.837953091684435,
292
+ "eval_accuracy": 0.9932,
293
+ "eval_loss": 0.01944512128829956,
294
+ "eval_runtime": 5.1522,
295
+ "eval_samples_per_second": 1940.922,
296
+ "eval_steps_per_second": 15.333,
297
+ "step": 1800
298
+ },
299
+ {
300
+ "epoch": 4.051172707889126,
301
+ "grad_norm": 0.5996153950691223,
302
+ "learning_rate": 0.0001518123667377399,
303
+ "loss": 0.006,
304
+ "step": 1900
305
+ },
306
+ {
307
+ "epoch": 4.051172707889126,
308
+ "eval_accuracy": 0.9938,
309
+ "eval_loss": 0.018317226320505142,
310
+ "eval_runtime": 4.9544,
311
+ "eval_samples_per_second": 2018.428,
312
+ "eval_steps_per_second": 15.946,
313
+ "step": 1900
314
+ },
315
+ {
316
+ "epoch": 4.264392324093817,
317
+ "grad_norm": 0.0069321137852966785,
318
+ "learning_rate": 0.00011769722814498933,
319
+ "loss": 0.0063,
320
+ "step": 2000
321
+ },
322
+ {
323
+ "epoch": 4.264392324093817,
324
+ "eval_accuracy": 0.9934,
325
+ "eval_loss": 0.018384862691164017,
326
+ "eval_runtime": 4.7636,
327
+ "eval_samples_per_second": 2099.232,
328
+ "eval_steps_per_second": 16.584,
329
+ "step": 2000
330
+ },
331
+ {
332
+ "epoch": 4.477611940298507,
333
+ "grad_norm": 0.06509185582399368,
334
+ "learning_rate": 8.392324093816631e-05,
335
+ "loss": 0.0043,
336
+ "step": 2100
337
+ },
338
+ {
339
+ "epoch": 4.477611940298507,
340
+ "eval_accuracy": 0.9932,
341
+ "eval_loss": 0.018380142748355865,
342
+ "eval_runtime": 4.6951,
343
+ "eval_samples_per_second": 2129.883,
344
+ "eval_steps_per_second": 16.826,
345
+ "step": 2100
346
+ },
347
+ {
348
+ "epoch": 4.690831556503198,
349
+ "grad_norm": 0.17103737592697144,
350
+ "learning_rate": 4.980810234541578e-05,
351
+ "loss": 0.0035,
352
+ "step": 2200
353
+ },
354
+ {
355
+ "epoch": 4.690831556503198,
356
+ "eval_accuracy": 0.9931,
357
+ "eval_loss": 0.018344268202781677,
358
+ "eval_runtime": 4.6229,
359
+ "eval_samples_per_second": 2163.133,
360
+ "eval_steps_per_second": 17.089,
361
+ "step": 2200
362
+ },
363
+ {
364
+ "epoch": 4.904051172707889,
365
+ "grad_norm": 0.6465263962745667,
366
+ "learning_rate": 1.5692963752665246e-05,
367
+ "loss": 0.0061,
368
+ "step": 2300
369
+ },
370
+ {
371
+ "epoch": 4.904051172707889,
372
+ "eval_accuracy": 0.9931,
373
+ "eval_loss": 0.018412619829177856,
374
+ "eval_runtime": 4.7593,
375
+ "eval_samples_per_second": 2101.13,
376
+ "eval_steps_per_second": 16.599,
377
+ "step": 2300
378
+ },
379
+ {
380
+ "epoch": 5.0,
381
+ "step": 2345,
382
+ "total_flos": 1346208595200000.0,
383
+ "train_loss": 0.014373551363121472,
384
+ "train_runtime": 335.5598,
385
+ "train_samples_per_second": 894.028,
386
+ "train_steps_per_second": 6.988
387
+ }
388
+ ],
389
+ "logging_steps": 100,
390
+ "max_steps": 2345,
391
+ "num_input_tokens_seen": 0,
392
+ "num_train_epochs": 5,
393
+ "save_steps": 3000,
394
+ "stateful_callbacks": {
395
+ "TrainerControl": {
396
+ "args": {
397
+ "should_epoch_stop": false,
398
+ "should_evaluate": false,
399
+ "should_log": false,
400
+ "should_save": true,
401
+ "should_training_stop": true
402
+ },
403
+ "attributes": {}
404
+ }
405
+ },
406
+ "total_flos": 1346208595200000.0,
407
+ "train_batch_size": 128,
408
+ "trial_name": null,
409
+ "trial_params": null
410
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f025d41c388918472644cf05d640f1bc355f2bc4b3d2ce3674bdc0e5ceeb4001
3
+ size 5112