--- language: hu license: mit widget: - text: "Karikó Katalin megkapja Szeged díszpolgárságát." --- # Hungarian Named Entity Recognition (NER) Model This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "SZTAKI-HLT/hubert-base-cc" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9774538310923768 * f1: 0.9462099085573904 * precision: 0.9425718667406271 * recall: 0.9498761426661113