File size: 2,028 Bytes
391d609 13c7df7 266eb0a 13c7df7 6e3d17b 13c7df7 16e5d3d 13c7df7 170b97d 13c7df7 7afea69 efdd50c 7afea69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language: tr
widget:
- text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı."
---
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased"
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9933935699477056
* f1: 0.9592969472710453
* precision: 0.9543530277931161
* recall: 0.9642923563325274
Evaluation results with the test sets proposed in ["Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye."](https://ieeexplore.ieee.org/document/7495744) paper.
Test Set Acc. Prec. Rec. F1-Score
20010000 0.9946 0.9871 0.9463 0.9662
20020000 0.9928 0.9134 0.9206 0.9170
20030000 0.9942 0.9814 0.9186 0.9489
20040000 0.9943 0.9660 0.9522 0.9590
20050000 0.9971 0.9539 0.9932 0.9732
20060000 0.9993 0.9942 0.9942 0.9942
20070000 0.9970 0.9806 0.9439 0.9619
20080000 0.9988 0.9821 0.9649 0.9735
20090000 0.9977 0.9891 0.9479 0.9681
20100000 0.9961 0.9684 0.9293 0.9485
Overall 0.9961 0.9720 0.9516 0.9617 |