Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,48 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- unicamp-dl/mmarco
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
---
|
8 |
+
|
9 |
+
We initialize SPLADE-japanese from [tohoku-nlp/bert-base-japanese-v2](https://huggingface.co/tohoku-nlp/bert-base-japanese-v2) and trained
|
10 |
+
This model is trained on [mMARCO](https://github.com/unicamp-dl/mMARCO) Japanese dataset.
|
11 |
+
|
12 |
+
```python
|
13 |
+
from transformers import AutoModelForMaskedLM,AutoTokenizer
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
model = AutoModelForMaskedLM.from_pretrained("aken12/splade-japanese")
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("aken12/splade-japanese")
|
19 |
+
|
20 |
+
query = "私は筑波大学の学生です"
|
21 |
+
|
22 |
+
def encode_query(query, tokenizer, model):
|
23 |
+
encoded_input = tokenizer(query, return_tensors="pt")
|
24 |
+
with torch.no_grad():
|
25 |
+
output = model(**encoded_input, return_dict=True).logits
|
26 |
+
aggregated_output, _ = torch.max(torch.log(1 + torch.relu(output)) * encoded_input['attention_mask'].unsqueeze(-1), dim=1)
|
27 |
+
return aggregated_output
|
28 |
+
|
29 |
+
def get_topk_tokens(reps, vocab_dict, topk):
|
30 |
+
topk_values, topk_indices = torch.topk(reps, topk, dim=1)
|
31 |
+
values = np.rint(topk_values.numpy() * 100).astype(int)
|
32 |
+
dict_splade = {vocab_dict[id_token.item()]: int(value_token) for id_token, value_token in zip(topk_indices[0], values[0]) if value_token > 0}
|
33 |
+
return dict_splade
|
34 |
+
|
35 |
+
|
36 |
+
vocab_dict = {v: k for k, v in tokenizer.get_vocab().items()}
|
37 |
+
topk = len(vocab_dict) // 1000
|
38 |
+
|
39 |
+
|
40 |
+
model_output = encode_query(query, tokenizer, model)
|
41 |
+
|
42 |
+
|
43 |
+
dict_splade = get_topk_tokens(model_output, vocab_dict, topk)
|
44 |
+
|
45 |
+
|
46 |
+
for token, value in dict_splade.items():
|
47 |
+
print(token, value)
|
48 |
+
```
|