--- license: cc-by-sa-4.0 datasets: - unicamp-dl/mmarco language: - ja --- We initialize SPLADE-japanese from [tohoku-nlp/bert-base-japanese-v2](https://huggingface.co/tohoku-nlp/bert-base-japanese-v2) and trained This model is trained on [mMARCO](https://github.com/unicamp-dl/mMARCO) Japanese dataset. ```python from transformers import AutoModelForMaskedLM,AutoTokenizer import torch import numpy as np model = AutoModelForMaskedLM.from_pretrained("aken12/splade-japanese") tokenizer = AutoTokenizer.from_pretrained("aken12/splade-japanese") query = "私は筑波大学の学生です" def encode_query(query, tokenizer, model): encoded_input = tokenizer(query, return_tensors="pt") with torch.no_grad(): output = model(**encoded_input, return_dict=True).logits aggregated_output, _ = torch.max(torch.log(1 + torch.relu(output)) * encoded_input['attention_mask'].unsqueeze(-1), dim=1) return aggregated_output def get_topk_tokens(reps, vocab_dict, topk): topk_values, topk_indices = torch.topk(reps, topk, dim=1) values = np.rint(topk_values.numpy() * 100).astype(int) dict_splade = {vocab_dict[id_token.item()]: int(value_token) for id_token, value_token in zip(topk_indices[0], values[0]) if value_token > 0} return dict_splade vocab_dict = {v: k for k, v in tokenizer.get_vocab().items()} topk = len(vocab_dict) // 1000 model_output = encode_query(query, tokenizer, model) dict_splade = get_topk_tokens(model_output, vocab_dict, topk) for token, value in dict_splade.items(): print(token, value) ```