akgeni commited on
Commit
7a2877b
·
1 Parent(s): 57a7e0e

PPO traine with 1M timesteps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 17.83 +/- 89.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 259.83 +/- 11.32
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f673850bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f673850bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f673850bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f673850be50>", "_build": "<function ActorCriticPolicy._build at 0x7f673850bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f673850bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6738510040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f67385100d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6738510160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f67385101f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6738510280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6738508480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671533183522451396, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0Wjj2u+Ya6kki4uzsZXbaf2My6SPHFNQAAgD8AAIA/c3O4PfAF6j7AzpS9CRb6vVQNZr3u+/C8AAAAAAAAAACzMrK9SJebupszorxxKY+3gjDEurIPhbgAAIA/AACAP5OCZj7Rtmo+I6eHuzOIFL5Nu5M9tGfCPQAAAAAAAAAAUyFEPq9KGT5rHXo9ZTwpvsP+/Txj9fC7AAAAAAAAAABzirU9BNumPkuSVrsktRO+BdUsvcpoPz0AAAAAAAAAAM0MqjtcB0S6unCEu7tFX7bakvK6Vt7INQAAgD8AAIA/Bv8tvldI8z5ZbLy9ms0bvrR5p7zIKYC9AAAAAAAAAACA2iY+16BZu+2zJDzddjG8E+2QvMoGi7wAAIA/AACAP7OqUT1Of5M/Cp13PYblhb4k94g96BBSPQAAAAAAAAAAEva6vpxAdT3bvie8GrQIvnNob7lAa5m9AAAAAAAAAADmd909JK2TP36UYT4M5qm+Na5xPsojST0AAAAAAAAAAHjS3r70O8e8VB2Zu025pzcARvy7flK3OgAAgD8AAIA/MxZlveEeirrzRla8RxxSuwr+F7sUrTa8AACAPwAAgD9LjZ2+/wFbP69zs7zcREK+LATjuwtbqTwAAAAAAAAAAOp9nr4EZiM+UhkTPfse7L2HiyM98lCPvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXjr/NuDUcCUhpRSlIwBbJRNQwKMAXSUR0CP6PXe3x4IdX2UKGgGaAloD0MIP/7Soj6KWECUhpRSlGgVTegDaBZHQI/sQm7aqS51fZQoaAZoCWgPQwiy17s/3u5RQJSGlFKUaBVN6ANoFkdAj/F9JSR8t3V9lChoBmgJaA9DCDwW26SiIRTAlIaUUpRoFU02AWgWR0CP/Czl90A+dX2UKGgGaAloD0MIROBIoMGUV0CUhpRSlGgVTegDaBZHQI/9wB1cMVl1fZQoaAZoCWgPQwjuIkxRLilVQJSGlFKUaBVN6ANoFkdAkABai0v4/XV9lChoBmgJaA9DCBWscTYdj1ZAlIaUUpRoFU3oA2gWR0CQBUJP69CedX2UKGgGaAloD0MIpMUZw5xZZ0CUhpRSlGgVTWMCaBZHQJAMiKIi1Rd1fZQoaAZoCWgPQwjU00fgD/8FwJSGlFKUaBVNiwFoFkdAkBAYGhVU/HV9lChoBmgJaA9DCNfDl4miNGhAlIaUUpRoFU17AmgWR0CQEzKq4pc5dX2UKGgGaAloD0MIw9Zs5SWgWECUhpRSlGgVTegDaBZHQJAXljMFEAp1fZQoaAZoCWgPQwi78e7I2GlpQJSGlFKUaBVNVQJoFkdAkBfrRKHwgHV9lChoBmgJaA9DCGywcJLmQ15AlIaUUpRoFU3oA2gWR0CQGnlNlAeJdX2UKGgGaAloD0MIG9gqwWJ4aUCUhpRSlGgVTZkBaBZHQJAbYeq7yx11fZQoaAZoCWgPQwikbmdfeZBZQJSGlFKUaBVN6ANoFkdAkCTZ39rGi3V9lChoBmgJaA9DCN4BnrRwITjAlIaUUpRoFU2uAWgWR0CQQg5yEL6UdX2UKGgGaAloD0MIIa8Hk+KTV0CUhpRSlGgVTegDaBZHQJBCiVlf7aZ1fZQoaAZoCWgPQwig/rPmx0pgQJSGlFKUaBVN6ANoFkdAkENM7p3X7XV9lChoBmgJaA9DCD+Ne/MbPkPAlIaUUpRoFU2WAWgWR0CQREctGus+dX2UKGgGaAloD0MIvady2lOWVECUhpRSlGgVTegDaBZHQJBGKfzz3AV1fZQoaAZoCWgPQwhPd554zuFaQJSGlFKUaBVN6ANoFkdAkEdbpA2Q4nV9lChoBmgJaA9DCE28AzxpilxAlIaUUpRoFU3oA2gWR0CQTKenhsIndX2UKGgGaAloD0MI5QmEnWK9WUCUhpRSlGgVTegDaBZHQJBUZLSNOud1fZQoaAZoCWgPQwiG5GTiViVeQJSGlFKUaBVN6ANoFkdAkFYwyZa3Z3V9lChoBmgJaA9DCNo8DoP5zV1AlIaUUpRoFU3oA2gWR0CQXA1fVqetdX2UKGgGaAloD0MIWg70UNsqMcCUhpRSlGgVTVQBaBZHQJBdIMTewcJ1fZQoaAZoCWgPQwiuEiwOZ8taQJSGlFKUaBVN6ANoFkdAkGPD/p+tsHV9lChoBmgJaA9DCGQ/i6VIC2lAlIaUUpRoFU2lAWgWR0CQZNe0Xxe+dX2UKGgGaAloD0MIDaX2ItotaUCUhpRSlGgVTcwBaBZHQJBmQNoakyl1fZQoaAZoCWgPQwiYpDLFnGZgQJSGlFKUaBVN6ANoFkdAkGb3OryUcHV9lChoBmgJaA9DCPLSTWKQF2BAlIaUUpRoFU3oA2gWR0CQaZJQcghbdX2UKGgGaAloD0MIGy5yT1eJVkCUhpRSlGgVTegDaBZHQJBtHWCmMwV1fZQoaAZoCWgPQwiSA3Y1eWpVQJSGlFKUaBVN6ANoFkdAkG+17Uoa1nV9lChoBmgJaA9DCNbIrrSMx2pAlIaUUpRoFU0JAmgWR0CQckV2Rq46dX2UKGgGaAloD0MIJxHhXwRKXkCUhpRSlGgVTegDaBZHQJB5rVUdaMd1fZQoaAZoCWgPQwgGLSRgdHkkwJSGlFKUaBVNYgFoFkdAkIPoacZtN3V9lChoBmgJaA9DCLFre7slMSvAlIaUUpRoFU0eAWgWR0CQj+ryUcGUdX2UKGgGaAloD0MINiIYB5eCW0CUhpRSlGgVTegDaBZHQJCTx2icoYx1fZQoaAZoCWgPQwh9QKAzaa5ZQJSGlFKUaBVN6ANoFkdAkJZ7IT4+KXV9lChoBmgJaA9DCBJNoIhFmDbAlIaUUpRoFU23AWgWR0CQlpEJSiuddX2UKGgGaAloD0MIV+pZEMrHWUCUhpRSlGgVTegDaBZHQJCXkfV7QcB1fZQoaAZoCWgPQwhEvkupS9dcQJSGlFKUaBVN6ANoFkdAkKQ0RnOB2HV9lChoBmgJaA9DCL0cdt8x/mFAlIaUUpRoFU3oA2gWR0CQpiEL6UJOdX2UKGgGaAloD0MIKSFYVS8DYECUhpRSlGgVTegDaBZHQJCsR4xDb8F1fZQoaAZoCWgPQwiXH7jKEx1eQJSGlFKUaBVN6ANoFkdAkK1mMOwxFnV9lChoBmgJaA9DCBwJNNjU/mpAlIaUUpRoFU1zAWgWR0CQtDWqtHQQdX2UKGgGaAloD0MIutqK/WVkVECUhpRSlGgVTegDaBZHQJC0NvS+g151fZQoaAZoCWgPQwgc0xOWeAxdQJSGlFKUaBVN6ANoFkdAkLVO2mYShHV9lChoBmgJaA9DCHYzox8NRltAlIaUUpRoFU3oA2gWR0CQttSZjQRgdX2UKGgGaAloD0MIaW6FsBqWWECUhpRSlGgVTegDaBZHQJC6IMZxaPl1fZQoaAZoCWgPQwigpwGDpGtqQJSGlFKUaBVN+wFoFkdAkLxWL1mJ33V9lChoBmgJaA9DCHvAPGTKT1FAlIaUUpRoFU3oA2gWR0CQvTisny/cdX2UKGgGaAloD0MI4UOJljyxXUCUhpRSlGgVTegDaBZHQJDB8xL0z0p1fZQoaAZoCWgPQwjJ5T+k3z9pQJSGlFKUaBVNuAFoFkdAkNDJ5/smfHV9lChoBmgJaA9DCBtmaDwRDC5AlIaUUpRoFU0xA2gWR0CQ0UdCmdiEdX2UKGgGaAloD0MIl4v4TszcRMCUhpRSlGgVTW4BaBZHQJDTGUMXrMV1fZQoaAZoCWgPQwjfF5eqtF1dQJSGlFKUaBVN6ANoFkdAkNSRuCPIXHV9lChoBmgJaA9DCF4vTRHg9kLAlIaUUpRoFU1tAWgWR0CQ3GfG+9J0dX2UKGgGaAloD0MIfzMxXYhFX0CUhpRSlGgVTegDaBZHQJDjJ9NN8E51fZQoaAZoCWgPQwgg71UrE/tdQJSGlFKUaBVN6ANoFkdAkOW8JpnHvXV9lChoBmgJaA9DCPD3i9mShT7AlIaUUpRoFU1BAWgWR0CQ6hWt2cJ/dX2UKGgGaAloD0MI6LzGLtHrZkCUhpRSlGgVTZkBaBZHQJDxlmNBF/h1fZQoaAZoCWgPQwih8xq7RCxcQJSGlFKUaBVN6ANoFkdAkPOH6/IsAnV9lChoBmgJaA9DCFsGnKXkJGFAlIaUUpRoFU3oA2gWR0CQ9UBK+SKWdX2UKGgGaAloD0MIZ5jaUgd4aUCUhpRSlGgVTd8BaBZHQJD4TS0BwMp1fZQoaAZoCWgPQwhBZ9Km6u40wJSGlFKUaBVNMwFoFkdAkPplsLv1DnV9lChoBmgJaA9DCDjZBu5AFVxAlIaUUpRoFU3oA2gWR0CQ+tOvt+kQdX2UKGgGaAloD0MIJv+Tv3u/XECUhpRSlGgVTegDaBZHQJEB9wrDqGF1fZQoaAZoCWgPQwhpHOp3YQFbQJSGlFKUaBVN6ANoFkdAkQH4m1IAfnV9lChoBmgJaA9DCJsBLsiWP19AlIaUUpRoFU3oA2gWR0CRBE7+1jRVdX2UKGgGaAloD0MIHk/LD9yuZUCUhpRSlGgVTaYBaBZHQJEEYN0/4Zd1fZQoaAZoCWgPQwguILQevo5ZQJSGlFKUaBVN6ANoFkdAkQc3cHnln3V9lChoBmgJaA9DCFyq0hbX3ltAlIaUUpRoFU3oA2gWR0CRCUvhqCYkdX2UKGgGaAloD0MI0R+aeXJ9PMCUhpRSlGgVTWEBaBZHQJEKbyhBZ6l1fZQoaAZoCWgPQwjGbTSAtwhbQJSGlFKUaBVN6ANoFkdAkQ5+oo/iYXV9lChoBmgJaA9DCNy5MNKL+iJAlIaUUpRoFU1kAWgWR0CREFs052hadX2UKGgGaAloD0MI0Lnb9dJ0akCUhpRSlGgVTcwBaBZHQJESFjpcHGF1fZQoaAZoCWgPQwg0go3r32k1QJSGlFKUaBVNNgFoFkdAkR+AIIF/x3V9lChoBmgJaA9DCOjewyXHa1tAlIaUUpRoFU3oA2gWR0CRH++wkgOjdX2UKGgGaAloD0MIhSf0+pONaECUhpRSlGgVTTMCaBZHQJEkmll9Sdh1fZQoaAZoCWgPQwiRDaSLTYtdQJSGlFKUaBVN6ANoFkdAkSgmkN4JNXV9lChoBmgJaA9DCOEp5Eo9cFDAlIaUUpRoFU1SAWgWR0CRLCe7+T/ydX2UKGgGaAloD0MILnB5rJkJZkCUhpRSlGgVTZ0BaBZHQJEsd0GNaQp1fZQoaAZoCWgPQwid81McBw4gQJSGlFKUaBVNQAFoFkdAkS0uoLofS3V9lChoBmgJaA9DCDC7Jw8LLFxAlIaUUpRoFU3oA2gWR0CRNV5CngpCdX2UKGgGaAloD0MI+g0TDVICUMCUhpRSlGgVTWABaBZHQJE7IoCuEEl1fZQoaAZoCWgPQwiNYrml1V9cQJSGlFKUaBVN6ANoFkdAkTym3z+WGHV9lChoBmgJaA9DCPBMaJJYWmBAlIaUUpRoFU3oA2gWR0CRQ+i1iONpdX2UKGgGaAloD0MI6SYxCCx9ZkCUhpRSlGgVTRcCaBZHQJFKLPa+N991fZQoaAZoCWgPQwjfwORGkeJfQJSGlFKUaBVN6ANoFkdAkU9sbFS88XV9lChoBmgJaA9DCLQfKSLDF1tAlIaUUpRoFU3oA2gWR0CRT26f8MuwdX2UKGgGaAloD0MI+u3rwDmEakCUhpRSlGgVTRECaBZHQJFR0IjW07d1fZQoaAZoCWgPQwhl/tE3adNaQJSGlFKUaBVN6ANoFkdAkVIgKjSG8HV9lChoBmgJaA9DCAmocASp3VlAlIaUUpRoFU3oA2gWR0CRUjEc81XOdX2UKGgGaAloD0MIZR2OrtIHQsCUhpRSlGgVTVcBaBZHQJFVmcJ+lTF1fZQoaAZoCWgPQwgLJCh+DEdsQJSGlFKUaBVNowFoFkdAkVWp0r9VFXV9lChoBmgJaA9DCOLIA5FF611AlIaUUpRoFU3oA2gWR0CRV39EkSmJdX2UKGgGaAloD0MI4XzqWKX8PMCUhpRSlGgVTUYBaBZHQJFa6YnfEXN1fZQoaAZoCWgPQwipa+19qjxfQJSGlFKUaBVN6ANoFkdAkWBtTYNAknV9lChoBmgJaA9DCBtkkpGzkkjAlIaUUpRoFU0ZAWgWR0CRYLitJWeZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb75b33ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb75b33d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb75b33dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb75b33e50>", "_build": "<function ActorCriticPolicy._build at 0x7efb75b33ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb75b33f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb75b39040>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb75b390d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb75b39160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb75b391f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb75b39280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efb75b304b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgPZYC0MQXpOAr/brhxh45Q9Uar2DgoBGkaf5JjpgAF7sUoXG81fejxas0LUGQBbV8nn8eTyF38JutEza+CWwHv7wqceRh7ud5W1XdyONn9z73PXC4cExDs5Hhv46TBvl0KmVJtfJd5yVd32XtSdfpdb21pYlhm1e5kGo6vy75m5/2zwnxkH2V0PHAp5dLsQHK6HaMmw33UIHJjS6COoResYFYlrCNBAtMYO94ubZs3K0E0AWmHyAsYGB+DhvyNt7ce9mBOTvd+Fw2410nVV/ugWp0hfHmYi5E3Dp1N4dk9k3+9y1ZXo/XBHLHxmdtGF6OtigV/RLBb3S9DvusLVVsFlK/kFiL+UFjFUPf5TaaU6r6xGh+o6DeE9/T6EHrXTNoVx5JyfOKNH4YfuZs27SyySGIoM5wcl6L0bq826bdVQ5VjrLWdfiBljwO45jz94+fS71fUjHtGgOXVK0XqXEL+pGEb/6msvFmXrAARc1Yy9hpmv9gJ5fCmLed2OFCSMlMVHSjAA4NQCYarM8WxzMjvmYvcl3T7cY76CNQy1OI0aNgqz/C/HmEBc2qEeuXirULpFfOLO55NDC0hyw+EDETE+F4TMObajPgMncDLlpE71IkcmVaQ0JVU0JgPpnjiDrvzCTrCz3a8N+1Pg70KXrfupWMykJ+S/A9TRzV2VKYTnX70k8esSW22/V50PzgVU8RQirTDxhkoKsaYC34Y3zJQHPO1z4Tn+FS25dNnVHZoZP+InrjVJSQm/vF5SeCWPXGFzwCjXmH27V45pE1L7yQOreyl6rVkTudWIBgdtYYjZ9xIUytpWsDNOdPcvsWhmC67/KPTkcyLEUUrvSqtY5q4UJSwfRffmEP+QgMsU28XTLM8jThAw0WMevdiI8mHxUrGTKLLpP02NA6ykvdiJe6ajWiFcC0xTJhLFHSrVDpNv4kJ58Oy8UpulgXEuEinI+elLzDux47v6AtC4KGK3jRypX2K0rCvvh/jSEj2mySiaVm3+YG7pLDPJSWkVm4Z92XWrEEk4hnedaGiYAzsCnZiRwY+Qf6fv2PWvLicKma5BpVun/2K2f+/OCZhylwR6L+Mo24q0sCFiVrR/r00Yu0RsZJF+SCWSaC/UMC4z7G5GSsEpvqQ4Vm9ZEhO2AuR3tzfmNLTYmM25g6U7NtJZfmhhd9/HXDksgxOLNaryl28EIesCrOUl77AatlRY1UyQk4GYXZbfR9H4gfdISCkSs13XcTbU3s73qtsRpf02BNWuChM0HzECMduiK1KSTfDnM0xMiS0Nwm8S2cpKFU12OmkeE5L87Wbvkg4HcO1YveyvEBk3Plp3FTqYwKJ+8YXVFs9whyuOzQKmrjSqrg7AzxP8OuC8ITRr2s/tk8Ksp/Q5PcbaJ7MdmpoSv1TvoqBS/W4Jr7wkey5BLCEWd7/A9Y0C0CQm+cyuAP52rQ/XTm5vT1PXsgpqVolZuOVdvXchHak2NPCGPYL1j+nGJlvprGmVGCQoe1keG0wUxoeu7/rNYxSGL0We9pqsgfGcE4cF9uZypoja044szAPyXGIUdPBzReKWXeUVwpaARpyZawbC6dDUpASX3WInaf0k6+GWGAI98Pf4yywE1mMb5QkJIbPLkyqto2yd4MzY5/p9vH6+T0vLuX5p9Ja6B1UT9tBHangIkM6ar9Ohfl7xyEafVSkXAftNwVFWL8d3VPYjbsPyRehLG6YACDkeeCOScHa+s8Cf+/uMPa9U7anu6Q51XN0Njvwj1MV+hYN/7rZ6I5EA/ebr1RyQhwDicdCe7KlPRLxrCUckBNdYqsmPX45T5X44FLJzbG3pQDZZxEzpIO2jXeVjAm+7AKtu+MZ+Hd1sWQaJSK+ADqjRbKWAa7u8OAuT9N/8hgvo8gdgho0QfiOjPaYEazccQTxO7X878tU/PgFFGbSxpa0Cd/ixvascKmGM7oIvPf1bUlQHuDeZzfhXsSW9DKxDaJu0HiH4sEfmZnyPph2sPZubBNjywnQ/nsDmE0VQWFSwFe8x+62HiK7A1wVW9i6xD5JFbEa2wSvewJtI4eKzceHcQ2o1VEw6OHyYKWUMN6uvKCPQnn9852HOOiX8OVeZgEnSZG4b7bxeuDKYbCG7tdZK1LADHqrezmYk2M55GRbhOL+bNttkU5I/0Gl2axsp2/aftxb4OOBuk8SFAogoqj+jA5LV2/c1XrWuE09t7nJw+4LicGTP5XZvn7g3/1jJvSUR/4F0NtYw6W+Gd+mkLYYwcuTfuN346mLHBsjpu14uhkyQ3e1BZzvLGFgesbFlQ7DbBrqfiZEdq5V2etWurt3qog56xXMutgYH+J63PUzqVvXPx2BsgvnZvciC5kJTuRgB2VH7zuPgzZayUxxeiq3uLr6ZtZeFmwdi+AjaU4mwTRgRcN2OTy6K+0hXU4tYtI6ZgQruJrM7uEgjLV9NpoYTm6Wj+tyQvoJkKvd/8eT3pBiFz4z6qgUNN7qwg/mcrJZTRXkhYBOjges91HoOkD2fK2sjiwYcg+91lTfavRBg9Ce7E+Mw+vCFMQ5tTH3kcB2fcE+HHMWmtkvAX7EoIPyDB2974YGx9nqGy56ZrA+croWl+z1raWbN3M2LdhasxTv5NFd68TJ0HbfaAODXxXfDCtSNRLfoRNuCqMYij47M97t+sFw7uA39OLNqpZTOmdGQ/ZI2lQGbCRTpFzp5m0GY37gWZ4eHxywu3/ZLHzSIww1iM46eEiLaSOfqS2cIDOusoEdBJaXgpdNhYx+rRAq5nlWRbF5dlMvzjcNRkz3WbUcUnihc2fyU9QE8cS5jZ2Ow6gUaKA0MBGkFBxZu8Jd5I19dIXlYxENKx4MHieLESppaIaOOiSTCfj8TwI+u/oIWMa38inSLsIiawhXTmkCKObLHtcgn9cvq+gsX26IBo5vilgSPTa0OLfwfRTJLyARxFJefUMNWq1OEBAZ9jb/213bBb2p43hw8d++WqO/acHBn//hVLH5STb598XEwto+4YPu0YznrtYEWF66d0SNqgq8zZctDMB0h+18T7I8FBzMhidFyiMVVwCPn9bvrvcLlh9hc9WB2RDdFmkf5SOdWy9zcD5TwtBIU/9B9m9XrKg/R7BXr6feTnFYRmk95BhJDOKyW5UhsgNoJP1xzBND9CKG7+AtesTTmgWYCBKcckBp5LLECW4un/Vkpg88dM2YVZjfOSWpheh30GP2T2a4eo5Zfxo3/nCzfZ2G47ElbSehlDftnpvAMWMoa7l28b1n/LFFRIHxmCmRuaF2WLnJMWxQX3TGHM0AW/sBLTwQRHaVyCDKfPzx9uoiBmlO4I88Qhk38/lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671600963205247851, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrB0b1Fc0Q+UD4/ProyRL6eyNc96LAAvQAAAAAAAAAA5jhTvexWrrtr0RA9wgUIPQeS/7wg9eE9AACAPwAAgD8mVmm+OMU/P0JPyL2v/si+aHdjvpm9sj0AAAAAAAAAAKa2o72Rv84+OrqNvfdOir6p7ma9ctxAvQAAAAAAAAAAgMciPjm4Gz9Ss0a9/oLMvn5o9D05ALq9AAAAAAAAAAAAOIg7QK+zP8Y1+jyOXki+hT9AvKpLiLwAAAAAAAAAAODNFz67PqU+Y6xrviBElr5uEuk8QhsSvQAAAAAAAAAA5kWEPVxjLbr48lEzM8pjrn1GYbvGDsOzAACAPwAAgD/Azo+912MAuXeJKrTA39MulKMpu5BZtTMAAIA/AACAP0CYsb1cQ026oRJHNpo0/zVsNt061k0mNwAAgD8AAIA/zX0XPSngb7pWyYW25sScsfKUjjvHdqE1AACAPwAAgD/TqFc+7Ea6PrLkkL6yMKe+8gcPPWgkD74AAAAAAAAAAM2scrqc7xK83VelvR43DD3A2Y495XXjvQAAgD8AAIA/2qALPq6UMT+O3tG8x0HHvjfUAj4nHpK8AAAAAAAAAACaJac9cU1QudvqLjjPW2Az6acMumjqTrcAAIA/AACAPwDo1T32pA26g0XEua8pZba9egW5e7nnOAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImrUUkPY7bkCUhpRSlIwBbJRNEQGMAXSUR0CRNRUcn3L3dX2UKGgGaAloD0MI2XvxRbsOc0CUhpRSlGgVTTABaBZHQJE1ZoAXEZR1fZQoaAZoCWgPQwg02T9PgzNxQJSGlFKUaBVL6mgWR0CRNhuEmICVdX2UKGgGaAloD0MILGFtjJ03ckCUhpRSlGgVS/5oFkdAkTZhzFMqSXV9lChoBmgJaA9DCEV/aObJFHJAlIaUUpRoFU1HA2gWR0CRNyPLxI8RdX2UKGgGaAloD0MI8S4X8R0YckCUhpRSlGgVTRUBaBZHQJE3c/xDst11fZQoaAZoCWgPQwjMYIxIVCtwQJSGlFKUaBVNHAFoFkdAkTd2zSkTH3V9lChoBmgJaA9DCOvkDMVd7HFAlIaUUpRoFUvkaBZHQJE4gmnfl6t1fZQoaAZoCWgPQwhOY3staLpyQJSGlFKUaBVL6WgWR0CROKZpBX0YdX2UKGgGaAloD0MI/P7NixODcUCUhpRSlGgVTXcBaBZHQJE5NtFa0Qd1fZQoaAZoCWgPQwgCDqFKTTFsQJSGlFKUaBVNJgFoFkdAkTlcc+7lJnV9lChoBmgJaA9DCKFl3T/W0nFAlIaUUpRoFU01AWgWR0CROcpobn5jdX2UKGgGaAloD0MIfPFFe/wsckCUhpRSlGgVTUcBaBZHQJE6BHskY411fZQoaAZoCWgPQwhoeomxTFdyQJSGlFKUaBVNOwJoFkdAkTn7GaQV9HV9lChoBmgJaA9DCGWNeojGHXBAlIaUUpRoFU0VAWgWR0CROoUFjd56dX2UKGgGaAloD0MIOWHCaNY4cUCUhpRSlGgVS9loFkdAkTvfs7dSEXV9lChoBmgJaA9DCEwao3VUCG1AlIaUUpRoFU07AWgWR0CRPaqvvBrOdX2UKGgGaAloD0MIKJ6zBUSzcECUhpRSlGgVS/ZoFkdAkT3TUVi4KHV9lChoBmgJaA9DCB/11yuss3BAlIaUUpRoFU0IAWgWR0CRPiYSQHRkdX2UKGgGaAloD0MIf6Xz4ZmFcUCUhpRSlGgVTTIBaBZHQJE+hIWgvlF1fZQoaAZoCWgPQwjJAbuavBJzQJSGlFKUaBVL+WgWR0CRPufHggoxdX2UKGgGaAloD0MIJ4QOusRbckCUhpRSlGgVTQIBaBZHQJE/Li83+/B1fZQoaAZoCWgPQwgTSfQyCnJyQJSGlFKUaBVNIwFoFkdAkT/oiC8OC3V9lChoBmgJaA9DCNmVlpF66nFAlIaUUpRoFU0aAWgWR0CRQPul41P4dX2UKGgGaAloD0MIblFmg8x5cUCUhpRSlGgVS/RoFkdAkUEbD63y7XV9lChoBmgJaA9DCOlHwykzVXBAlIaUUpRoFU0QAWgWR0CRQV+mWMS9dX2UKGgGaAloD0MILv62JwivckCUhpRSlGgVTQMBaBZHQJFCdaiblRx1fZQoaAZoCWgPQwjOUNzxpuNvQJSGlFKUaBVNMQFoFkdAkUKIDoyKvXV9lChoBmgJaA9DCPMC7KNTVXNAlIaUUpRoFU0eAWgWR0CRQp2xIJ7cdX2UKGgGaAloD0MIfJxpwvaVcECUhpRSlGgVTU4BaBZHQJFCrwUg0TF1fZQoaAZoCWgPQwjPgeUIGbdxQJSGlFKUaBVNJQFoFkdAkULHuiN83XV9lChoBmgJaA9DCJ28yAT87W1AlIaUUpRoFU0AAWgWR0CRRYQPqcEvdX2UKGgGaAloD0MIOXzSicT1cECUhpRSlGgVS+toFkdAkUZMeOn2qXV9lChoBmgJaA9DCDFBDd/CPHBAlIaUUpRoFU0bAWgWR0CRRlCJ40MxdX2UKGgGaAloD0MIvi8uVekOcUCUhpRSlGgVTRQBaBZHQJFGk1FYuCh1fZQoaAZoCWgPQwgNchdhyjZxQJSGlFKUaBVNXwFoFkdAkUbOJpFkQXV9lChoBmgJaA9DCFk0nZ0MRHJAlIaUUpRoFU0TAWgWR0CRR1lxwQ18dX2UKGgGaAloD0MIC3+GNys/c0CUhpRSlGgVS9hoFkdAkUewLE1l5HV9lChoBmgJaA9DCHWsUnqmA3JAlIaUUpRoFUv/aBZHQJFHw3xWkrR1fZQoaAZoCWgPQwhmvK30mlhwQJSGlFKUaBVL7mgWR0CRSKNEw35vdX2UKGgGaAloD0MIkxlvK31acUCUhpRSlGgVTVEBaBZHQJFI6AavRqp1fZQoaAZoCWgPQwgG9S1zeiZwQJSGlFKUaBVNFwFoFkdAkUmMS00FbHV9lChoBmgJaA9DCDV5ymp6JXFAlIaUUpRoFU0HAWgWR0CRXqDzyz5XdX2UKGgGaAloD0MIZRh3g6gZckCUhpRSlGgVTSIBaBZHQJFfQPMB6rx1fZQoaAZoCWgPQwi3f2WlyVVxQJSGlFKUaBVNJAFoFkdAkV/IdIXj2nV9lChoBmgJaA9DCO6wicxck25AlIaUUpRoFU03AWgWR0CRYBjnmq5tdX2UKGgGaAloD0MIq1/pfHgmbkCUhpRSlGgVTQsBaBZHQJFiV1zQu291fZQoaAZoCWgPQwi296kqtC9uQJSGlFKUaBVL+GgWR0CRYnhqCYkWdX2UKGgGaAloD0MIdT+nIL9ucECUhpRSlGgVTQsBaBZHQJFjMQlKK511fZQoaAZoCWgPQwhYqgt4GdRxQJSGlFKUaBVNBwFoFkdAkWNVOXVslHV9lChoBmgJaA9DCNuHvOUqP3FAlIaUUpRoFU2RAWgWR0CRY4PEbYK6dX2UKGgGaAloD0MIGLSQgFHNcUCUhpRSlGgVS/ZoFkdAkWPb9ZRsM3V9lChoBmgJaA9DCNc07zhFkHNAlIaUUpRoFU0JAWgWR0CRZIRwIdELdX2UKGgGaAloD0MIyjZwB+rBbUCUhpRSlGgVS/VoFkdAkWTFQEZBLXV9lChoBmgJaA9DCPTEc7YAwnFAlIaUUpRoFU0eAWgWR0CRZMJbMX7+dX2UKGgGaAloD0MIpMaEmEtmcUCUhpRSlGgVS+VoFkdAkWUc0UGmk3V9lChoBmgJaA9DCLQ5zm2ConBAlIaUUpRoFU1CAWgWR0CRZUiXY150dX2UKGgGaAloD0MIltHI55X0ckCUhpRSlGgVTVUBaBZHQJFnsqd6LO11fZQoaAZoCWgPQwjr4GBv4txyQJSGlFKUaBVNAwFoFkdAkWgR5HEuQXV9lChoBmgJaA9DCOaSqu0mKG1AlIaUUpRoFU0JAWgWR0CRaJPyTY/WdX2UKGgGaAloD0MI/yWpTLHwbkCUhpRSlGgVTS4BaBZHQJFpCfQKKHh1fZQoaAZoCWgPQwjH8xlQ7/9wQJSGlFKUaBVL7GgWR0CRabkoWpIddX2UKGgGaAloD0MIk//J3z2ZckCUhpRSlGgVS99oFkdAkWoz0UXYUXV9lChoBmgJaA9DCJNwIY/ggnFAlIaUUpRoFU0FAWgWR0CRamsqril0dX2UKGgGaAloD0MInBTmPU6XckCUhpRSlGgVTWwBaBZHQJFqZNYbKih1fZQoaAZoCWgPQwiazk4GR9tvQJSGlFKUaBVNFQFoFkdAkWvBXfZVXHV9lChoBmgJaA9DCMnH7gIlsnJAlIaUUpRoFUv9aBZHQJFsNWsA/9p1fZQoaAZoCWgPQwjyfXGpyj1wQJSGlFKUaBVNKAFoFkdAkWw9nK4hEHV9lChoBmgJaA9DCIFdTZ4ys2xAlIaUUpRoFU0lAWgWR0CRbMpyIYWMdX2UKGgGaAloD0MIkE3yI74WckCUhpRSlGgVTQIBaBZHQJFs/xQSBbx1fZQoaAZoCWgPQwh/oUeMnrRvQJSGlFKUaBVNDQFoFkdAkW130kGA1HV9lChoBmgJaA9DCCQmqOEbm3JAlIaUUpRoFU04AWgWR0CRbhwQlKK6dX2UKGgGaAloD0MIlu1D3nK7cUCUhpRSlGgVTUQBaBZHQJFubxJ/XoV1fZQoaAZoCWgPQwjWq8joQAZwQJSGlFKUaBVL8mgWR0CRbxEbHZK4dX2UKGgGaAloD0MIV9C0xEqdcECUhpRSlGgVTQABaBZHQJFwVKSPluF1fZQoaAZoCWgPQwioUUgy69BxQJSGlFKUaBVNFwFoFkdAkXCTfm9xqHV9lChoBmgJaA9DCBf03hiCam5AlIaUUpRoFU0aAWgWR0CRcY2F36hydX2UKGgGaAloD0MIRwVOtkGkcECUhpRSlGgVS/1oFkdAkXIE+X7cf3V9lChoBmgJaA9DCGu4yD3dTnBAlIaUUpRoFU0MAWgWR0CRckZ8a4tpdX2UKGgGaAloD0MIWFnbFM+7cECUhpRSlGgVTSMBaBZHQJFzJ/lQuVZ1fZQoaAZoCWgPQwihoupXOtdwQJSGlFKUaBVL9WgWR0CRc3/X5FgEdX2UKGgGaAloD0MIGeWZl0M7c0CUhpRSlGgVTVUBaBZHQJF0FuaWom51fZQoaAZoCWgPQwiWBn5UQ/hwQJSGlFKUaBVNFgFoFkdAkXQbb5/LDHV9lChoBmgJaA9DCECJz50g+nFAlIaUUpRoFUv7aBZHQJF0epsGgSR1fZQoaAZoCWgPQwgCnx9GyNZwQJSGlFKUaBVNFgFoFkdAkXSHHq/ucHV9lChoBmgJaA9DCJPlJJT+b3JAlIaUUpRoFUv0aBZHQJF0wyad+Xt1fZQoaAZoCWgPQwgK2A5G7LZvQJSGlFKUaBVL+2gWR0CRdY4fwI+odX2UKGgGaAloD0MIi28ofLYscUCUhpRSlGgVTTkBaBZHQJF15rgwXZZ1fZQoaAZoCWgPQwhPIOwUK5ZwQJSGlFKUaBVL9mgWR0CRdlPvrnkldX2UKGgGaAloD0MIhpM0fwyQckCUhpRSlGgVS+toFkdAkXcnnEETx3V9lChoBmgJaA9DCMMoCB7fJVFAlIaUUpRoFUuBaBZHQJF3mX1J17p1fZQoaAZoCWgPQwhavcPtUAVwQJSGlFKUaBVNQQFoFkdAkXfPx+az/3V9lChoBmgJaA9DCLIrLSM1iXJAlIaUUpRoFUv9aBZHQJF5PD2rXDp1fZQoaAZoCWgPQwhgzJasijFyQJSGlFKUaBVNHQFoFkdAkXnBY3eenXV9lChoBmgJaA9DCJOoF3xaRHJAlIaUUpRoFUv0aBZHQJF6g4uK4x11fZQoaAZoCWgPQwiJQWDlUH5yQJSGlFKUaBVL/WgWR0CRenXQdCE6dX2UKGgGaAloD0MIN6rTgWxqcECUhpRSlGgVTTMBaBZHQJF7VK02LpB1fZQoaAZoCWgPQwj4/DBCuPRwQJSGlFKUaBVL62gWR0CRe2HVPN3XdX2UKGgGaAloD0MIxHjNq/oucECUhpRSlGgVTQ0BaBZHQJF760tyxRl1fZQoaAZoCWgPQwh1IVZ/RPBxQJSGlFKUaBVNLgFoFkdAkX1iF0xM4HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_model_v1_ts_1M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ccdcfa0c591d548f17cfa68359d923a5b87c72ace568f3514c141cf3ff805ad
3
+ size 150840
ppo_model_v1_ts_1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_model_v1_ts_1M/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb75b33ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb75b33d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb75b33dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb75b33e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efb75b33ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efb75b33f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb75b39040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efb75b390d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb75b39160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb75b391f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb75b39280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efb75b304b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgPZYC0MQXpOAr/brhxh45Q9Uar2DgoBGkaf5JjpgAF7sUoXG81fejxas0LUGQBbV8nn8eTyF38JutEza+CWwHv7wqceRh7ud5W1XdyONn9z73PXC4cExDs5Hhv46TBvl0KmVJtfJd5yVd32XtSdfpdb21pYlhm1e5kGo6vy75m5/2zwnxkH2V0PHAp5dLsQHK6HaMmw33UIHJjS6COoResYFYlrCNBAtMYO94ubZs3K0E0AWmHyAsYGB+DhvyNt7ce9mBOTvd+Fw2410nVV/ugWp0hfHmYi5E3Dp1N4dk9k3+9y1ZXo/XBHLHxmdtGF6OtigV/RLBb3S9DvusLVVsFlK/kFiL+UFjFUPf5TaaU6r6xGh+o6DeE9/T6EHrXTNoVx5JyfOKNH4YfuZs27SyySGIoM5wcl6L0bq826bdVQ5VjrLWdfiBljwO45jz94+fS71fUjHtGgOXVK0XqXEL+pGEb/6msvFmXrAARc1Yy9hpmv9gJ5fCmLed2OFCSMlMVHSjAA4NQCYarM8WxzMjvmYvcl3T7cY76CNQy1OI0aNgqz/C/HmEBc2qEeuXirULpFfOLO55NDC0hyw+EDETE+F4TMObajPgMncDLlpE71IkcmVaQ0JVU0JgPpnjiDrvzCTrCz3a8N+1Pg70KXrfupWMykJ+S/A9TRzV2VKYTnX70k8esSW22/V50PzgVU8RQirTDxhkoKsaYC34Y3zJQHPO1z4Tn+FS25dNnVHZoZP+InrjVJSQm/vF5SeCWPXGFzwCjXmH27V45pE1L7yQOreyl6rVkTudWIBgdtYYjZ9xIUytpWsDNOdPcvsWhmC67/KPTkcyLEUUrvSqtY5q4UJSwfRffmEP+QgMsU28XTLM8jThAw0WMevdiI8mHxUrGTKLLpP02NA6ykvdiJe6ajWiFcC0xTJhLFHSrVDpNv4kJ58Oy8UpulgXEuEinI+elLzDux47v6AtC4KGK3jRypX2K0rCvvh/jSEj2mySiaVm3+YG7pLDPJSWkVm4Z92XWrEEk4hnedaGiYAzsCnZiRwY+Qf6fv2PWvLicKma5BpVun/2K2f+/OCZhylwR6L+Mo24q0sCFiVrR/r00Yu0RsZJF+SCWSaC/UMC4z7G5GSsEpvqQ4Vm9ZEhO2AuR3tzfmNLTYmM25g6U7NtJZfmhhd9/HXDksgxOLNaryl28EIesCrOUl77AatlRY1UyQk4GYXZbfR9H4gfdISCkSs13XcTbU3s73qtsRpf02BNWuChM0HzECMduiK1KSTfDnM0xMiS0Nwm8S2cpKFU12OmkeE5L87Wbvkg4HcO1YveyvEBk3Plp3FTqYwKJ+8YXVFs9whyuOzQKmrjSqrg7AzxP8OuC8ITRr2s/tk8Ksp/Q5PcbaJ7MdmpoSv1TvoqBS/W4Jr7wkey5BLCEWd7/A9Y0C0CQm+cyuAP52rQ/XTm5vT1PXsgpqVolZuOVdvXchHak2NPCGPYL1j+nGJlvprGmVGCQoe1keG0wUxoeu7/rNYxSGL0We9pqsgfGcE4cF9uZypoja044szAPyXGIUdPBzReKWXeUVwpaARpyZawbC6dDUpASX3WInaf0k6+GWGAI98Pf4yywE1mMb5QkJIbPLkyqto2yd4MzY5/p9vH6+T0vLuX5p9Ja6B1UT9tBHangIkM6ar9Ohfl7xyEafVSkXAftNwVFWL8d3VPYjbsPyRehLG6YACDkeeCOScHa+s8Cf+/uMPa9U7anu6Q51XN0Njvwj1MV+hYN/7rZ6I5EA/ebr1RyQhwDicdCe7KlPRLxrCUckBNdYqsmPX45T5X44FLJzbG3pQDZZxEzpIO2jXeVjAm+7AKtu+MZ+Hd1sWQaJSK+ADqjRbKWAa7u8OAuT9N/8hgvo8gdgho0QfiOjPaYEazccQTxO7X878tU/PgFFGbSxpa0Cd/ixvascKmGM7oIvPf1bUlQHuDeZzfhXsSW9DKxDaJu0HiH4sEfmZnyPph2sPZubBNjywnQ/nsDmE0VQWFSwFe8x+62HiK7A1wVW9i6xD5JFbEa2wSvewJtI4eKzceHcQ2o1VEw6OHyYKWUMN6uvKCPQnn9852HOOiX8OVeZgEnSZG4b7bxeuDKYbCG7tdZK1LADHqrezmYk2M55GRbhOL+bNttkU5I/0Gl2axsp2/aftxb4OOBuk8SFAogoqj+jA5LV2/c1XrWuE09t7nJw+4LicGTP5XZvn7g3/1jJvSUR/4F0NtYw6W+Gd+mkLYYwcuTfuN346mLHBsjpu14uhkyQ3e1BZzvLGFgesbFlQ7DbBrqfiZEdq5V2etWurt3qog56xXMutgYH+J63PUzqVvXPx2BsgvnZvciC5kJTuRgB2VH7zuPgzZayUxxeiq3uLr6ZtZeFmwdi+AjaU4mwTRgRcN2OTy6K+0hXU4tYtI6ZgQruJrM7uEgjLV9NpoYTm6Wj+tyQvoJkKvd/8eT3pBiFz4z6qgUNN7qwg/mcrJZTRXkhYBOjges91HoOkD2fK2sjiwYcg+91lTfavRBg9Ce7E+Mw+vCFMQ5tTH3kcB2fcE+HHMWmtkvAX7EoIPyDB2974YGx9nqGy56ZrA+croWl+z1raWbN3M2LdhasxTv5NFd68TJ0HbfaAODXxXfDCtSNRLfoRNuCqMYij47M97t+sFw7uA39OLNqpZTOmdGQ/ZI2lQGbCRTpFzp5m0GY37gWZ4eHxywu3/ZLHzSIww1iM46eEiLaSOfqS2cIDOusoEdBJaXgpdNhYx+rRAq5nlWRbF5dlMvzjcNRkz3WbUcUnihc2fyU9QE8cS5jZ2Ow6gUaKA0MBGkFBxZu8Jd5I19dIXlYxENKx4MHieLESppaIaOOiSTCfj8TwI+u/oIWMa38inSLsIiawhXTmkCKObLHtcgn9cvq+gsX26IBo5vilgSPTa0OLfwfRTJLyARxFJefUMNWq1OEBAZ9jb/213bBb2p43hw8d++WqO/acHBn//hVLH5STb598XEwto+4YPu0YznrtYEWF66d0SNqgq8zZctDMB0h+18T7I8FBzMhidFyiMVVwCPn9bvrvcLlh9hc9WB2RDdFmkf5SOdWy9zcD5TwtBIU/9B9m9XrKg/R7BXr6feTnFYRmk95BhJDOKyW5UhsgNoJP1xzBND9CKG7+AtesTTmgWYCBKcckBp5LLECW4un/Vkpg88dM2YVZjfOSWpheh30GP2T2a4eo5Zfxo3/nCzfZ2G47ElbSehlDftnpvAMWMoa7l28b1n/LFFRIHxmCmRuaF2WLnJMWxQX3TGHM0AW/sBLTwQRHaVyCDKfPzx9uoiBmlO4I88Qhk38/lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671600963205247851,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrB0b1Fc0Q+UD4/ProyRL6eyNc96LAAvQAAAAAAAAAA5jhTvexWrrtr0RA9wgUIPQeS/7wg9eE9AACAPwAAgD8mVmm+OMU/P0JPyL2v/si+aHdjvpm9sj0AAAAAAAAAAKa2o72Rv84+OrqNvfdOir6p7ma9ctxAvQAAAAAAAAAAgMciPjm4Gz9Ss0a9/oLMvn5o9D05ALq9AAAAAAAAAAAAOIg7QK+zP8Y1+jyOXki+hT9AvKpLiLwAAAAAAAAAAODNFz67PqU+Y6xrviBElr5uEuk8QhsSvQAAAAAAAAAA5kWEPVxjLbr48lEzM8pjrn1GYbvGDsOzAACAPwAAgD/Azo+912MAuXeJKrTA39MulKMpu5BZtTMAAIA/AACAP0CYsb1cQ026oRJHNpo0/zVsNt061k0mNwAAgD8AAIA/zX0XPSngb7pWyYW25sScsfKUjjvHdqE1AACAPwAAgD/TqFc+7Ea6PrLkkL6yMKe+8gcPPWgkD74AAAAAAAAAAM2scrqc7xK83VelvR43DD3A2Y495XXjvQAAgD8AAIA/2qALPq6UMT+O3tG8x0HHvjfUAj4nHpK8AAAAAAAAAACaJac9cU1QudvqLjjPW2Az6acMumjqTrcAAIA/AACAPwDo1T32pA26g0XEua8pZba9egW5e7nnOAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImrUUkPY7bkCUhpRSlIwBbJRNEQGMAXSUR0CRNRUcn3L3dX2UKGgGaAloD0MI2XvxRbsOc0CUhpRSlGgVTTABaBZHQJE1ZoAXEZR1fZQoaAZoCWgPQwg02T9PgzNxQJSGlFKUaBVL6mgWR0CRNhuEmICVdX2UKGgGaAloD0MILGFtjJ03ckCUhpRSlGgVS/5oFkdAkTZhzFMqSXV9lChoBmgJaA9DCEV/aObJFHJAlIaUUpRoFU1HA2gWR0CRNyPLxI8RdX2UKGgGaAloD0MI8S4X8R0YckCUhpRSlGgVTRUBaBZHQJE3c/xDst11fZQoaAZoCWgPQwjMYIxIVCtwQJSGlFKUaBVNHAFoFkdAkTd2zSkTH3V9lChoBmgJaA9DCOvkDMVd7HFAlIaUUpRoFUvkaBZHQJE4gmnfl6t1fZQoaAZoCWgPQwhOY3staLpyQJSGlFKUaBVL6WgWR0CROKZpBX0YdX2UKGgGaAloD0MI/P7NixODcUCUhpRSlGgVTXcBaBZHQJE5NtFa0Qd1fZQoaAZoCWgPQwgCDqFKTTFsQJSGlFKUaBVNJgFoFkdAkTlcc+7lJnV9lChoBmgJaA9DCKFl3T/W0nFAlIaUUpRoFU01AWgWR0CROcpobn5jdX2UKGgGaAloD0MIfPFFe/wsckCUhpRSlGgVTUcBaBZHQJE6BHskY411fZQoaAZoCWgPQwhoeomxTFdyQJSGlFKUaBVNOwJoFkdAkTn7GaQV9HV9lChoBmgJaA9DCGWNeojGHXBAlIaUUpRoFU0VAWgWR0CROoUFjd56dX2UKGgGaAloD0MIOWHCaNY4cUCUhpRSlGgVS9loFkdAkTvfs7dSEXV9lChoBmgJaA9DCEwao3VUCG1AlIaUUpRoFU07AWgWR0CRPaqvvBrOdX2UKGgGaAloD0MIKJ6zBUSzcECUhpRSlGgVS/ZoFkdAkT3TUVi4KHV9lChoBmgJaA9DCB/11yuss3BAlIaUUpRoFU0IAWgWR0CRPiYSQHRkdX2UKGgGaAloD0MIf6Xz4ZmFcUCUhpRSlGgVTTIBaBZHQJE+hIWgvlF1fZQoaAZoCWgPQwjJAbuavBJzQJSGlFKUaBVL+WgWR0CRPufHggoxdX2UKGgGaAloD0MIJ4QOusRbckCUhpRSlGgVTQIBaBZHQJE/Li83+/B1fZQoaAZoCWgPQwgTSfQyCnJyQJSGlFKUaBVNIwFoFkdAkT/oiC8OC3V9lChoBmgJaA9DCNmVlpF66nFAlIaUUpRoFU0aAWgWR0CRQPul41P4dX2UKGgGaAloD0MIblFmg8x5cUCUhpRSlGgVS/RoFkdAkUEbD63y7XV9lChoBmgJaA9DCOlHwykzVXBAlIaUUpRoFU0QAWgWR0CRQV+mWMS9dX2UKGgGaAloD0MILv62JwivckCUhpRSlGgVTQMBaBZHQJFCdaiblRx1fZQoaAZoCWgPQwjOUNzxpuNvQJSGlFKUaBVNMQFoFkdAkUKIDoyKvXV9lChoBmgJaA9DCPMC7KNTVXNAlIaUUpRoFU0eAWgWR0CRQp2xIJ7cdX2UKGgGaAloD0MIfJxpwvaVcECUhpRSlGgVTU4BaBZHQJFCrwUg0TF1fZQoaAZoCWgPQwjPgeUIGbdxQJSGlFKUaBVNJQFoFkdAkULHuiN83XV9lChoBmgJaA9DCJ28yAT87W1AlIaUUpRoFU0AAWgWR0CRRYQPqcEvdX2UKGgGaAloD0MIOXzSicT1cECUhpRSlGgVS+toFkdAkUZMeOn2qXV9lChoBmgJaA9DCDFBDd/CPHBAlIaUUpRoFU0bAWgWR0CRRlCJ40MxdX2UKGgGaAloD0MIvi8uVekOcUCUhpRSlGgVTRQBaBZHQJFGk1FYuCh1fZQoaAZoCWgPQwgNchdhyjZxQJSGlFKUaBVNXwFoFkdAkUbOJpFkQXV9lChoBmgJaA9DCFk0nZ0MRHJAlIaUUpRoFU0TAWgWR0CRR1lxwQ18dX2UKGgGaAloD0MIC3+GNys/c0CUhpRSlGgVS9hoFkdAkUewLE1l5HV9lChoBmgJaA9DCHWsUnqmA3JAlIaUUpRoFUv/aBZHQJFHw3xWkrR1fZQoaAZoCWgPQwhmvK30mlhwQJSGlFKUaBVL7mgWR0CRSKNEw35vdX2UKGgGaAloD0MIkxlvK31acUCUhpRSlGgVTVEBaBZHQJFI6AavRqp1fZQoaAZoCWgPQwgG9S1zeiZwQJSGlFKUaBVNFwFoFkdAkUmMS00FbHV9lChoBmgJaA9DCDV5ymp6JXFAlIaUUpRoFU0HAWgWR0CRXqDzyz5XdX2UKGgGaAloD0MIZRh3g6gZckCUhpRSlGgVTSIBaBZHQJFfQPMB6rx1fZQoaAZoCWgPQwi3f2WlyVVxQJSGlFKUaBVNJAFoFkdAkV/IdIXj2nV9lChoBmgJaA9DCO6wicxck25AlIaUUpRoFU03AWgWR0CRYBjnmq5tdX2UKGgGaAloD0MIq1/pfHgmbkCUhpRSlGgVTQsBaBZHQJFiV1zQu291fZQoaAZoCWgPQwi296kqtC9uQJSGlFKUaBVL+GgWR0CRYnhqCYkWdX2UKGgGaAloD0MIdT+nIL9ucECUhpRSlGgVTQsBaBZHQJFjMQlKK511fZQoaAZoCWgPQwhYqgt4GdRxQJSGlFKUaBVNBwFoFkdAkWNVOXVslHV9lChoBmgJaA9DCNuHvOUqP3FAlIaUUpRoFU2RAWgWR0CRY4PEbYK6dX2UKGgGaAloD0MIGLSQgFHNcUCUhpRSlGgVS/ZoFkdAkWPb9ZRsM3V9lChoBmgJaA9DCNc07zhFkHNAlIaUUpRoFU0JAWgWR0CRZIRwIdELdX2UKGgGaAloD0MIyjZwB+rBbUCUhpRSlGgVS/VoFkdAkWTFQEZBLXV9lChoBmgJaA9DCPTEc7YAwnFAlIaUUpRoFU0eAWgWR0CRZMJbMX7+dX2UKGgGaAloD0MIpMaEmEtmcUCUhpRSlGgVS+VoFkdAkWUc0UGmk3V9lChoBmgJaA9DCLQ5zm2ConBAlIaUUpRoFU1CAWgWR0CRZUiXY150dX2UKGgGaAloD0MIltHI55X0ckCUhpRSlGgVTVUBaBZHQJFnsqd6LO11fZQoaAZoCWgPQwjr4GBv4txyQJSGlFKUaBVNAwFoFkdAkWgR5HEuQXV9lChoBmgJaA9DCOaSqu0mKG1AlIaUUpRoFU0JAWgWR0CRaJPyTY/WdX2UKGgGaAloD0MI/yWpTLHwbkCUhpRSlGgVTS4BaBZHQJFpCfQKKHh1fZQoaAZoCWgPQwjH8xlQ7/9wQJSGlFKUaBVL7GgWR0CRabkoWpIddX2UKGgGaAloD0MIk//J3z2ZckCUhpRSlGgVS99oFkdAkWoz0UXYUXV9lChoBmgJaA9DCJNwIY/ggnFAlIaUUpRoFU0FAWgWR0CRamsqril0dX2UKGgGaAloD0MInBTmPU6XckCUhpRSlGgVTWwBaBZHQJFqZNYbKih1fZQoaAZoCWgPQwiazk4GR9tvQJSGlFKUaBVNFQFoFkdAkWvBXfZVXHV9lChoBmgJaA9DCMnH7gIlsnJAlIaUUpRoFUv9aBZHQJFsNWsA/9p1fZQoaAZoCWgPQwjyfXGpyj1wQJSGlFKUaBVNKAFoFkdAkWw9nK4hEHV9lChoBmgJaA9DCIFdTZ4ys2xAlIaUUpRoFU0lAWgWR0CRbMpyIYWMdX2UKGgGaAloD0MIkE3yI74WckCUhpRSlGgVTQIBaBZHQJFs/xQSBbx1fZQoaAZoCWgPQwh/oUeMnrRvQJSGlFKUaBVNDQFoFkdAkW130kGA1HV9lChoBmgJaA9DCCQmqOEbm3JAlIaUUpRoFU04AWgWR0CRbhwQlKK6dX2UKGgGaAloD0MIlu1D3nK7cUCUhpRSlGgVTUQBaBZHQJFubxJ/XoV1fZQoaAZoCWgPQwjWq8joQAZwQJSGlFKUaBVL8mgWR0CRbxEbHZK4dX2UKGgGaAloD0MIV9C0xEqdcECUhpRSlGgVTQABaBZHQJFwVKSPluF1fZQoaAZoCWgPQwioUUgy69BxQJSGlFKUaBVNFwFoFkdAkXCTfm9xqHV9lChoBmgJaA9DCBf03hiCam5AlIaUUpRoFU0aAWgWR0CRcY2F36hydX2UKGgGaAloD0MIRwVOtkGkcECUhpRSlGgVS/1oFkdAkXIE+X7cf3V9lChoBmgJaA9DCGu4yD3dTnBAlIaUUpRoFU0MAWgWR0CRckZ8a4tpdX2UKGgGaAloD0MIWFnbFM+7cECUhpRSlGgVTSMBaBZHQJFzJ/lQuVZ1fZQoaAZoCWgPQwihoupXOtdwQJSGlFKUaBVL9WgWR0CRc3/X5FgEdX2UKGgGaAloD0MIGeWZl0M7c0CUhpRSlGgVTVUBaBZHQJF0FuaWom51fZQoaAZoCWgPQwiWBn5UQ/hwQJSGlFKUaBVNFgFoFkdAkXQbb5/LDHV9lChoBmgJaA9DCECJz50g+nFAlIaUUpRoFUv7aBZHQJF0epsGgSR1fZQoaAZoCWgPQwgCnx9GyNZwQJSGlFKUaBVNFgFoFkdAkXSHHq/ucHV9lChoBmgJaA9DCJPlJJT+b3JAlIaUUpRoFUv0aBZHQJF0wyad+Xt1fZQoaAZoCWgPQwgK2A5G7LZvQJSGlFKUaBVL+2gWR0CRdY4fwI+odX2UKGgGaAloD0MIi28ofLYscUCUhpRSlGgVTTkBaBZHQJF15rgwXZZ1fZQoaAZoCWgPQwhPIOwUK5ZwQJSGlFKUaBVL9mgWR0CRdlPvrnkldX2UKGgGaAloD0MIhpM0fwyQckCUhpRSlGgVS+toFkdAkXcnnEETx3V9lChoBmgJaA9DCMMoCB7fJVFAlIaUUpRoFUuBaBZHQJF3mX1J17p1fZQoaAZoCWgPQwhavcPtUAVwQJSGlFKUaBVNQQFoFkdAkXfPx+az/3V9lChoBmgJaA9DCLIrLSM1iXJAlIaUUpRoFUv9aBZHQJF5PD2rXDp1fZQoaAZoCWgPQwhgzJasijFyQJSGlFKUaBVNHQFoFkdAkXnBY3eenXV9lChoBmgJaA9DCJOoF3xaRHJAlIaUUpRoFUv0aBZHQJF6g4uK4x11fZQoaAZoCWgPQwiJQWDlUH5yQJSGlFKUaBVL/WgWR0CRenXQdCE6dX2UKGgGaAloD0MIN6rTgWxqcECUhpRSlGgVTTMBaBZHQJF7VK02LpB1fZQoaAZoCWgPQwj4/DBCuPRwQJSGlFKUaBVL62gWR0CRe2HVPN3XdX2UKGgGaAloD0MIxHjNq/oucECUhpRSlGgVTQ0BaBZHQJF760tyxRl1fZQoaAZoCWgPQwh1IVZ/RPBxQJSGlFKUaBVNLgFoFkdAkX1iF0xM4HVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_model_v1_ts_1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966b798cb43efd0fcdfe884c230486b04dc401d8e8da28ac01db0d20b5a8b40b
3
+ size 87929
ppo_model_v1_ts_1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa91cb8cbdd98d93a8d47d4446fff51fdd50e945a3f49cc7f8adad8c9f13b791
3
+ size 43201
ppo_model_v1_ts_1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_model_v1_ts_1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 17.825759680011835, "std_reward": 88.99633921708748, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T11:27:47.501719"}
 
1
+ {"mean_reward": 259.826456113105, "std_reward": 11.324815002103184, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T05:57:03.895587"}