Add pipeline tag: text-generation (#1)
Browse files- Add pipeline tag: text-generation (3328523b3bd7cd186e4f70f230df5e896aa7b779)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
-
library_name: transformers
|
4 |
base_model:
|
5 |
- meta-llama/Llama-2-7b-hf
|
|
|
|
|
|
|
6 |
---
|
|
|
7 |
# TokenButler
|
8 |
<!-- markdownlint-disable first-line-h1 -->
|
9 |
<!-- markdownlint-disable html -->
|
10 |
<!-- markdownlint-disable no-duplicate-header -->
|
11 |
|
12 |
-
|
13 |
-
|
14 |
<div align="center">
|
15 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/tokenbutlerlogo.png?raw=true" width="50%" alt="TokenButler" />
|
16 |
</div>
|
17 |
<hr>
|
18 |
<div align="center" style="line-height: 1;">
|
19 |
<!-- Paper Badge -->
|
20 |
-
<a href="https://
|
21 |
<img alt="Paper"
|
22 |
src="https://img.shields.io/badge/Paper-View-orange?logo=readthedocs&logoColor=white"
|
23 |
style="display: inline-block; vertical-align: middle;"/>
|
@@ -25,18 +25,22 @@ base_model:
|
|
25 |
<!-- GitHub Badge -->
|
26 |
<a href="https://github.com/abdelfattah-lab/TokenButler" target="_blank" style="margin: 2px;">
|
27 |
<img alt="GitHub"
|
28 |
-
src="https://img.shields.io/badge/GitHub
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
style="display: inline-block; vertical-align: middle;"/>
|
30 |
</a>
|
31 |
</div>
|
32 |
|
33 |
<br>
|
34 |
|
35 |
-
|
36 |
-
|
37 |
The collection of TokenButler models can be found [here](https://huggingface.co/collections/akhauriyash/tokenbutler-67cf181b5762d0d60e5f312b). To run the `meta-llama/Llama-2-7b-hf` model, follow:
|
38 |
|
39 |
-
```
|
40 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
41 |
|
42 |
question = "If millionaires have butlers, why don't million dollar language models have a butler too? I think its because "
|
@@ -53,7 +57,7 @@ print(response[0]['generated_text'][len(question):])
|
|
53 |
|
54 |
Note that the 'default' configured sparsity is 50%. Further, there is a 'sliding window' of 128 and 8 'anchor tokens'. To 'change' the sparsity, you can use the following function after loading the model. Please note that the 'fixed' is the only supported strategy at the moment, which 'fixes' the sparsity of each layer (except the first) at the 'pc' (percentage) mentioned. This can also be found at `test_hf.py`. Sliding window and anchor tokens can be changed in a similar manner.
|
55 |
|
56 |
-
```
|
57 |
def set_sparsity(model, sparsity):
|
58 |
for module in model.modules():
|
59 |
if module.__class__.__name__.__contains__("AttentionExperimental"):
|
@@ -64,7 +68,6 @@ def set_sparsity(model, sparsity):
|
|
64 |
model = set_sparsity(model, "fixed_60pc")
|
65 |
```
|
66 |
|
67 |
-
|
68 |
# Predictor Architecture
|
69 |
<div align="center">
|
70 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/mainfig.png?raw=true" width="100%" alt="TokenButlerFigure" />
|
@@ -73,4 +76,18 @@ model = set_sparsity(model, "fixed_60pc")
|
|
73 |
# Custom Synthetic Task
|
74 |
<div align="center">
|
75 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/datasetfig.png?raw=true" width="100%" alt="Synthetic Tasks" />
|
76 |
-
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model:
|
3 |
- meta-llama/Llama-2-7b-hf
|
4 |
+
library_name: transformers
|
5 |
+
license: mit
|
6 |
+
pipeline_tag: text-generation
|
7 |
---
|
8 |
+
|
9 |
# TokenButler
|
10 |
<!-- markdownlint-disable first-line-h1 -->
|
11 |
<!-- markdownlint-disable html -->
|
12 |
<!-- markdownlint-disable no-duplicate-header -->
|
13 |
|
|
|
|
|
14 |
<div align="center">
|
15 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/tokenbutlerlogo.png?raw=true" width="50%" alt="TokenButler" />
|
16 |
</div>
|
17 |
<hr>
|
18 |
<div align="center" style="line-height: 1;">
|
19 |
<!-- Paper Badge -->
|
20 |
+
<a href="https://arxiv.org/abs/2503.07518" target="_blank" style="margin: 2px;">
|
21 |
<img alt="Paper"
|
22 |
src="https://img.shields.io/badge/Paper-View-orange?logo=readthedocs&logoColor=white"
|
23 |
style="display: inline-block; vertical-align: middle;"/>
|
|
|
25 |
<!-- GitHub Badge -->
|
26 |
<a href="https://github.com/abdelfattah-lab/TokenButler" target="_blank" style="margin: 2px;">
|
27 |
<img alt="GitHub"
|
28 |
+
src="https://img.shields.io/badge/GitHub-%23121011.svg?logo=github&logoColor=white"
|
29 |
+
style="display: inline-block; vertical-align: middle;"/>
|
30 |
+
</a>
|
31 |
+
<!-- Huggingface Badge -->
|
32 |
+
<a href="https://huggingface.co/collections/akhauriyash/tokenbutler-67cf181b5762d0d60e5f312b" target="_blank" style="margin: 2px;">
|
33 |
+
<img alt="Huggingface"
|
34 |
+
src="https://img.shields.io/badge/Hugging%20Face-FFD21E?logo=huggingface&logoColor=000"
|
35 |
style="display: inline-block; vertical-align: middle;"/>
|
36 |
</a>
|
37 |
</div>
|
38 |
|
39 |
<br>
|
40 |
|
|
|
|
|
41 |
The collection of TokenButler models can be found [here](https://huggingface.co/collections/akhauriyash/tokenbutler-67cf181b5762d0d60e5f312b). To run the `meta-llama/Llama-2-7b-hf` model, follow:
|
42 |
|
43 |
+
```python
|
44 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
45 |
|
46 |
question = "If millionaires have butlers, why don't million dollar language models have a butler too? I think its because "
|
|
|
57 |
|
58 |
Note that the 'default' configured sparsity is 50%. Further, there is a 'sliding window' of 128 and 8 'anchor tokens'. To 'change' the sparsity, you can use the following function after loading the model. Please note that the 'fixed' is the only supported strategy at the moment, which 'fixes' the sparsity of each layer (except the first) at the 'pc' (percentage) mentioned. This can also be found at `test_hf.py`. Sliding window and anchor tokens can be changed in a similar manner.
|
59 |
|
60 |
+
```python
|
61 |
def set_sparsity(model, sparsity):
|
62 |
for module in model.modules():
|
63 |
if module.__class__.__name__.__contains__("AttentionExperimental"):
|
|
|
68 |
model = set_sparsity(model, "fixed_60pc")
|
69 |
```
|
70 |
|
|
|
71 |
# Predictor Architecture
|
72 |
<div align="center">
|
73 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/mainfig.png?raw=true" width="100%" alt="TokenButlerFigure" />
|
|
|
76 |
# Custom Synthetic Task
|
77 |
<div align="center">
|
78 |
<img src="https://github.com/abdelfattah-lab/TokenButler/blob/main/figs/datasetfig.png?raw=true" width="100%" alt="Synthetic Tasks" />
|
79 |
+
</div>
|
80 |
+
|
81 |
+
## Citation
|
82 |
+
|
83 |
+
```bibtex
|
84 |
+
@misc{akhauri2025tokenbutlertokenimportancepredictable,
|
85 |
+
title={TokenButler: Token Importance is Predictable},
|
86 |
+
author={Yash Akhauri and Ahmed F AbouElhamayed and Yifei Gao and Chi-Chih Chang and Nilesh Jain and Mohamed S. Abdelfattah},
|
87 |
+
year={2025},
|
88 |
+
eprint={2503.07518},
|
89 |
+
archivePrefix={arXiv},
|
90 |
+
primaryClass={cs.CL},
|
91 |
+
url={https://arxiv.org/abs/2503.07518},
|
92 |
+
}
|
93 |
+
```
|