|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3810 |
|
- Rouge1: 5.5031 |
|
- Rouge2: 1.0338 |
|
- Rougel: 5.5913 |
|
- Rougelsum: 5.5823 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 6.1122 | 1.0 | 633 | 2.7996 | 2.2327 | 0.407 | 2.2401 | 2.2315 | |
|
| 3.3995 | 2.0 | 1266 | 2.6504 | 4.1774 | 0.5055 | 4.1819 | 4.2011 | |
|
| 3.1251 | 3.0 | 1899 | 2.5152 | 4.8394 | 0.8094 | 4.8236 | 4.8454 | |
|
| 2.9901 | 4.0 | 2532 | 2.4631 | 4.8948 | 0.7297 | 4.9055 | 4.9351 | |
|
| 2.8935 | 5.0 | 3165 | 2.4154 | 5.0999 | 0.7188 | 5.1579 | 5.1447 | |
|
| 2.8362 | 6.0 | 3798 | 2.4017 | 5.1248 | 0.6932 | 5.1452 | 5.1288 | |
|
| 2.7979 | 7.0 | 4431 | 2.3875 | 5.4277 | 1.0338 | 5.5187 | 5.5078 | |
|
| 2.767 | 8.0 | 5064 | 2.3810 | 5.5031 | 1.0338 | 5.5913 | 5.5823 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|