--- language: - en - multilingual - de - it - es - fr tags: - instruction-tuning - text-generation-inference - text2text-generation widget: - text: Write an essay about meditation. [EOI] example_title: Essay Generation - text: Give me 5 steps to clean my room. [EOI] example_title: How-to Instructions - text: How are the continents formed? [EOI] example_title: Question-Answering - text: >- Prompt: A man draws a gun in a dark alley and asks for your wallet. You begrudgingly obey. He throws it on the ground, shoots it till it screeches, and turns to you; 'you are safe now'. Write a story about given prompt. [EOI] example_title: Story Generation - text: >- Write directions of a cooking recipe with these ingredients: chicken breast, carrots, green peas, celery, butter, onion, flour, salt, black pepper, celery seed, chicken broth, milk, unbaked pie crusts [EOI] example_title: Recipe Generation - text: >- Schreiben Sie einen Blogbeitrag über die Vorteile des Lesens von Büchern. [EOI] example_title: German Essay Generation inference: parameters: top_p: 0.9 do_sample: true max_length: 50 datasets: - akoksal/LongForm --- ## LongForm-LLaMA-7B-diff The LongForm dataset is created by leveraging English corpus examples with augmented instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. Then, we extend these examples with structured corpora examples such as Stack Exchange and WikiHow and task examples such as question answering, email writing, grammar error correction, story/poem generation, and text summarization. Github Repo: https://github.com/akoksal/LongForm ### For OPT and LLaMA models: Use [EOI] to indicate the end of instruction. LongForm-**T5-XL**: https://huggingface.co/akoksal/LongForm-T5-XL LongForm-**OPT-2.7B**: https://huggingface.co/akoksal/LongForm-OPT-2.7B LongForm-**OPT-6.7B**: https://huggingface.co/akoksal/LongForm-OPT-6.7B ## How to Load ### We present the diff between LongForm-LLaMA-7B and LLaMA-7B because of the license constraints. Please load the pretrained 7B model, add [EOI] token, and add model weights. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # 1. Original LLaMA path original_llama_path = "/mounts/data/corp/huggingface/llama/llama-7b" # 2. Add [EOI] token to the tokenizer tokenizer = AutoTokenizer.from_pretrained(original_llama_path) tokenizer.add_tokens(["[EOI]"]) # 3. Add the pretrained llama with this diff base_model = AutoModelForCausalLM.from_pretrained(original_llama_path) base_model.resize_token_embeddings(len(tokenizer)) longform_model_diff = AutoModelForCausalLM.from_pretrained("akoksal/LongForm-LLaMA-7B-diff") longform_model = AutoModelForCausalLM.from_pretrained("akoksal/LongForm-LLaMA-7B-diff") # will change this to the actual model # Add diff with base model for name, param in base_model.named_parameters(): longform_model.state_dict()[name].copy_(param + longform_model_diff.state_dict()[name]) # 4. Example instruction = "Write an essay about meditation. [EOI]" torch.manual_seed(42) input_ids = tokenizer(instruction, return_tensors="pt").input_ids target_ids = longform_model.generate(input_ids, do_sample=True, max_new_tokens=50, top_p=0.9) tokenizer.decode(target_ids[0], skip_special_tokens=True) # Output: # > Write an essay about meditation. [EOI] There are a few types of meditation\ # but it essentially involves quieting the mind. The most common form of\ # meditation is where you sit down for a period of time and focus on your\ # breathing. Your goal is to be able to observe and ``` ## Evaluation We provide in-depth evaluation of LongForm models and baselines in the paper. We present the METEOR scores of models in out-of-domain datasets. In all tasks, Recipe Generation (RGen), long-form question answering (ELI5), short story generation (WritingPrompts/WP), LongForm models outperform prior instruction-tuned models. | | **All** | **Recipe Generation** | **ELI5** | **Writing Prompts** | |-----------------------|---------|-----------------------------------|----------|---------------------| | **T0++** | 10.9 | 18.7 | 3.8 | 10.2 | | **Tk-Instruct** | 6.3 | 12.9* | 3.6 | 2.4 | | **Flan-T5** | 10.6 | 20.9* | 3.5 | 7.4 | | **Alpaca-LLaMA-7B** | 14.6 | 19.5 | 12.5 | 11.8 | | **OPT-30B** | 11.1 | 18.6 | 12.2 | 2.6 | | [**LongForm-T5-XL**](https://huggingface.co/akoksal/LongForm-T5-XL) | 16.3 | 20.2 | 18.3 | 10.6 | | [**LongForm-OPT-2.7B**](https://huggingface.co/akoksal/LongForm-OPT-2.7B) | 17.8 | 15.5 | 17.9 | **19.9** | | [**LongForm-OPT-6.7B**](https://huggingface.co/akoksal/LongForm-OPT-6.7B) | 17.7 | 16.9 | 17.2 | 19.0 | | [**LongForm-LLaMA-7B**](https://huggingface.co/akoksal/LongForm-LLaMA-7B-diff)‡ | **19.7** | **21.7** | **18.6** | 18.9 | ‡: We can just release the difference between LongForm-LLaMA-7B and pretrained LLaMA-7B publicly due to restrictions of LLaMA models. ## Limitations The LongForm dataset and models mainly focus on long text generation and have limitations regarding structured prediction tasks in NLP. Additionally, we observe that LongForm models may present hallucination problems similar to those found in LLMs.