akoshel commited on
Commit
6caa3a4
1 Parent(s): a2de43c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1805.05 +/- 149.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a348ecd6ec4f41b93c2a9f2c4bdeaf98226504117fc78c3f02e3ed90dac8cbb
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3db79ed30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3db79edc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3db79ee50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3db79eee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd3db79ef70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd3db7a1040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3db7a10d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3db7a1160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd3db7a11f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3db7a1280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3db7a1310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3db7a13a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd3db799c30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677144020042267659,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC8QNT9+sZ4+7ZwWP0Pnvz+Xa46/1dAGwJVjcT4BShq/wqcGvsJmqT8pfbI+bUsgwBEo+Lzd/s0/x10Dvo7uiT8Vhkg+LY4AQDGVOj8I67I8KmUBP9/LlT/jeMo+YUo7QHv6j79Fc/0++zTrvzm3jr+1IZA9UYzCP7Zc975FLBE/OyjfvvwSWT9PsM6+uVk+Pp9Ahju/6z+/YNKCv5O5fT0JN+e+NmK4P3XTjT08pRU/OQQWPhI6H0DVjTw/wzV0uy9GJr9yQCI9xJXyPuolGj97+o+/RXP9Pvs0679ymmU/qvLtPymwDD8ntgE/EBLbP9pdCD845Ca+h33kP05Xlr/XNiw/CPMsvhP/rD7HWRJAHoWFP2Xvzb9eoBq/HHsMwDAfJT8l0pC/YkA6P17nJL9pOyi/NU6yPF4YXL/DCUPAe/qPv6VJAcDLUAs/ObeOv/3laD+LJOO7OgAfPzKPqT9UsiA/SsWJP6sxwb5nOX+/+mJQvrvwV79qAUe/JUCYP+L9gj+jo0G9uiFEP5gBKL+8Pas/VP88vzUWa7+ap98+/6Epv4zOgD72Kbg/uvqlv3v6j79Fc/0++zTrvzm3jr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvvOy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABtfoPQAAAACxT+q/AAAAAHp0oz0AAAAAd0z8PwAAAAAEnGI9AAAAACy5+z8AAAAAcnXKPQAAAAAb69+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1KRAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyH5D0AAAAAtb7rvwAAAABOHUk8AAAAAL7d6T8AAAAA6IE3vQAAAAAh5P4/AAAAALyim7wAAAAAPaThvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxm/LMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDh/S09AAAAAC8f7L8AAAAAFkTqPAAAAAAgquw/AAAAAJ3dOT0AAAAAC3fpPwAAAADzDQ89AAAAAI3G/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/iwu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdflBvQAAAABbJPS/AAAAAHX/kz0AAAAAoE7aPwAAAACAq5W9AAAAAL7W4z8AAAAAiFAHPgAAAAAXPu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJst0iV0Lc+MAWyUTegDjAF0lEdAqXJL3ueBhHV9lChoBkdAngYjisGPgmgHTegDaAhHQKlzDIsiB5J1fZQoaAZHQJFrSQhfShJoB03oA2gIR0Cpd7Fd9lVcdX2UKGgGR0CdRIZG8VYZaAdN6ANoCEdAqXiu0qpcX3V9lChoBkdAoHUgyhzvJGgHTegDaAhHQKl/inyd4FB1fZQoaAZHQKCLyuOjqOdoB03oA2gIR0CpgAmHYYixdX2UKGgGR0CcgQcm0E5iaAdN6ANoCEdAqYNRxeb/fnV9lChoBkdAhlnz+vQnhWgHTegDaAhHQKmEQn4wh4d1fZQoaAZHQKDfp45cTrVoB03oA2gIR0Cpi72OQyRCdX2UKGgGR0CZqSYuTRplaAdN6ANoCEdAqYxuTxG2C3V9lChoBkdAn2SwvYe1bGgHTegDaAhHQKmRj7oB7u51fZQoaAZHQKEDCW9lEqloB03oA2gIR0CpkxoyKvV3dX2UKGgGR0CSxusijcmCaAdN6ANoCEdAqZqIvalDW3V9lChoBkdAoOridQO4G2gHTegDaAhHQKmbBvOQhfV1fZQoaAZHQKCcUvTPSlZoB03oA2gIR0CpnnANoakzdX2UKGgGR0CgR+Oa4MF2aAdN6ANoCEdAqZ9vUBnzx3V9lChoBkdAoI1HDLr5ZmgHTegDaAhHQKmmakadc0N1fZQoaAZHQJ8asPy08eVoB03oA2gIR0CppuTkhib2dX2UKGgGR0CgRHkRJ2+xaAdN6ANoCEdAqaslVNpM6HV9lChoBkdAoTrLbpNbkmgHTegDaAhHQKmslleWv8t1fZQoaAZHQJhF9aHKwINoB03oA2gIR0Cpte8Ti83/dX2UKGgGR0CWbbrZamoBaAdN6ANoCEdAqbZlDneSCHV9lChoBkdAnOmuAuqWC2gHTegDaAhHQKm5sLfk3jx1fZQoaAZHQJ6oCPOpsGhoB03oA2gIR0Cpuqqxkd3jdX2UKGgGR0CgmWqOcUdraAdN6ANoCEdAqcGeo1k1/HV9lChoBkdAnxITfek562gHTegDaAhHQKnCFh3JPqN1fZQoaAZHQJ5qYpPRArxoB03oA2gIR0CpxWqbz9S/dX2UKGgGR0CfsXd0JWvKaAdN6ANoCEdAqcZg3Ns3ynV9lChoBkdAmaij/IbOvGgHTegDaAhHQKnRCGs3hn91fZQoaAZHQJemaSNfgJloB03oA2gIR0Cp0YQn6VMVdX2UKGgGR0CYDxf7rLQpaAdN6ANoCEdAqdTmQOnVG3V9lChoBkdAkREx5HEuQWgHTegDaAhHQKnV6FEiMYN1fZQoaAZHQJjhOIwdsBRoB03oA2gIR0Cp3P2uoxYadX2UKGgGR0CQP4L1EmY0aAdN6ANoCEdAqd16+i8Fp3V9lChoBkdAlUrZUcXFcmgHTegDaAhHQKng3b1RLsd1fZQoaAZHQJKWdIsiB5JoB03oA2gIR0Cp4dMHKOktdX2UKGgGR0CU8DZgXuVpaAdN6ANoCEdAqeqgAGSpznV9lChoBkdAl2AqvicXnGgHTegDaAhHQKnrZmXgLql1fZQoaAZHQJLcbneSB9VoB03oA2gIR0Cp8FZ4W1twdX2UKGgGR0CSPxOeJ53UaAdN6ANoCEdAqfFaZH/cWXV9lChoBkdAmGrgmzByj2gHTegDaAhHQKn4acLBsRB1fZQoaAZHQJqJclHBk7RoB03oA2gIR0Cp+OZcLSeAdX2UKGgGR0CamWC/47A+aAdN6ANoCEdAqfxOEEkjYHV9lChoBkdAnFQBradtmGgHTegDaAhHQKn9XJEpiJB1fZQoaAZHQJpJHhhpg1FoB03oA2gIR0CqBO6reZXudX2UKGgGR0COk1lXA/LUaAdN6ANoCEdAqgWi8zyjHnV9lChoBkdAm9lPrOZ9eGgHTegDaAhHQKoK1UNKAax1fZQoaAZHQJs3bcTJyQxoB03oA2gIR0CqDGoMrmQsdX2UKGgGR0CbTYNLUTcqaAdN6ANoCEdAqhPZAOavzXV9lChoBkdAnm1gSOBDomgHTegDaAhHQKoUUmWt2cJ1fZQoaAZHQJmKq814xDdoB03oA2gIR0CqF6VV5rxidX2UKGgGR0CWAmTQVsUJaAdN6ANoCEdAqhikHWz4UXV9lChoBkdAmvczUNKAa2gHTegDaAhHQKofsksSTQp1fZQoaAZHQJyIunUDuBtoB03oA2gIR0CqICy+Yc//dX2UKGgGR0CWtoLn9vS/aAdN6ANoCEdAqiRqsS00FnV9lChoBkdAlBuSqU/wAmgHTegDaAhHQKol/wNLDht1fZQoaAZHQIojzQJHAh1oB03oA2gIR0CqL14SxqwhdX2UKGgGR0CM6CieNDMNaAdN6ANoCEdAqi/X5HmRvHV9lChoBkdAiYPVOKwY+GgHTegDaAhHQKozI1l5GBp1fZQoaAZHQIcSYWLxZuBoB03oA2gIR0CqNBnzH0btdX2UKGgGR0CN3strbg0kaAdN6ANoCEdAqjsi99MK1HV9lChoBkdAhx8CRwIdEWgHTegDaAhHQKo7mzvZyuJ1fZQoaAZHQIU2MFyJbdJoB03oA2gIR0CqPxHMlkYodX2UKGgGR0CSs0Z75VOsaAdN6ANoCEdAqkBFHH3lCHV9lChoBkdAleuZBLPD52gHTegDaAhHQKpKx6HCXQd1fZQoaAZHQJiLbUH6dlNoB03oA2gIR0CqS0THCGeudX2UKGgGR0CSkGbH6uW9aAdN6ANoCEdAqk7HAAQxvnV9lChoBkdAmBsGe6I3zmgHTegDaAhHQKpPxk1dgOV1fZQoaAZHQJR3ZcyFfzBoB03oA2gIR0CqVtSjYZl4dX2UKGgGR0CXz+LcsUZfaAdN6ANoCEdAqldNaB7NS3V9lChoBkdAjkJGM4tHx2gHTegDaAhHQKpal4rz5Gl1fZQoaAZHQJDGHfoA4n5oB03oA2gIR0CqW45xzaK2dX2UKGgGR0CXh41yeZogaAdN6ANoCEdAqmTmgJ1JUnV9lChoBkdAlD7C2c8Tz2gHTegDaAhHQKplpYTTOPh1fZQoaAZHQJkx7QzDXOJoB03oA2gIR0CqaeShi9ZidX2UKGgGR0CTjiSL61staAdN6ANoCEdAqmrs8La24XV9lChoBkdAm1iN1loUSWgHTegDaAhHQKpx+801qFh1fZQoaAZHQJervJjlPrRoB03oA2gIR0CqcnNzCDVZdX2UKGgGR0Cbf4H4GlhxaAdN6ANoCEdAqnXERODaoXV9lChoBkdAjcfpudf9gmgHTegDaAhHQKp2wU1yeZp1fZQoaAZHQJ1UG02LpA5oB03oA2gIR0Cqfmwb+98JdX2UKGgGR0Cc1MEWqLjxaAdN6ANoCEdAqn8iDqW1MXV9lChoBkdAhYYe1jRUm2gHTegDaAhHQKqEV3ai9Ix1fZQoaAZHQJ3mnor4FidoB03oA2gIR0Cqhd/ZmI0qdX2UKGgGR0CciOfSQYDUaAdN6ANoCEdAqoz794u9OHV9lChoBkdAbkNiw0O3D2gHTegDaAhHQKqNdyoXKr91fZQoaAZHQJxrZ6mfoRtoB03oA2gIR0CqkM+hwl0HdX2UKGgGR0CTFNjIJZ4faAdN6ANoCEdAqpHSPU8V6HV9lChoBkdAlmSWDDjzZ2gHTegDaAhHQKqYxMV1wHZ1fZQoaAZHQJzonDrJKapoB03oA2gIR0CqmTxMewLWdX2UKGgGR0CJBwM/hVENaAdN6ANoCEdAqp2SVY6nznV9lChoBkdAmRTHwb2lEmgHTegDaAhHQKqfGC+10DF1fZQoaAZHQJYQ+R/3FkxoB03oA2gIR0CqqC3xOLzgdX2UKGgGR0CcEcxUNrj6aAdN6ANoCEdAqqiwV9F4LXV9lChoBkdAlAjGz8gp0GgHTegDaAhHQKqsEwIMSbp1fZQoaAZHQJoWVv3rUspoB03oA2gIR0CqrRJRoAXEdX2UKGgGR0CXC2UrkKeDaAdN6ANoCEdAqrQk/8l5W3V9lChoBkdAmB00X531SWgHTegDaAhHQKq0oNLlFMJ1fZQoaAZHQJ26rVurIYFoB03oA2gIR0Cqt/bUG3WndX2UKGgGR0CLTHpC8e0YaAdN6ANoCEdAqrkm4TbnHXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c3032cfc6acd3adf80f9bd3d85a4790181215211c241ee1449a970a9989ba85
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33831bb09b2acff32a91d4f78c07843b036bba54989aba4abfdf395feddd01bb
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3db79ed30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3db79edc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3db79ee50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3db79eee0>", "_build": "<function ActorCriticPolicy._build at 0x7fd3db79ef70>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3db7a1040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3db7a10d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3db7a1160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3db7a11f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3db7a1280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3db7a1310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3db7a13a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd3db799c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677144020042267659, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC8QNT9+sZ4+7ZwWP0Pnvz+Xa46/1dAGwJVjcT4BShq/wqcGvsJmqT8pfbI+bUsgwBEo+Lzd/s0/x10Dvo7uiT8Vhkg+LY4AQDGVOj8I67I8KmUBP9/LlT/jeMo+YUo7QHv6j79Fc/0++zTrvzm3jr+1IZA9UYzCP7Zc975FLBE/OyjfvvwSWT9PsM6+uVk+Pp9Ahju/6z+/YNKCv5O5fT0JN+e+NmK4P3XTjT08pRU/OQQWPhI6H0DVjTw/wzV0uy9GJr9yQCI9xJXyPuolGj97+o+/RXP9Pvs0679ymmU/qvLtPymwDD8ntgE/EBLbP9pdCD845Ca+h33kP05Xlr/XNiw/CPMsvhP/rD7HWRJAHoWFP2Xvzb9eoBq/HHsMwDAfJT8l0pC/YkA6P17nJL9pOyi/NU6yPF4YXL/DCUPAe/qPv6VJAcDLUAs/ObeOv/3laD+LJOO7OgAfPzKPqT9UsiA/SsWJP6sxwb5nOX+/+mJQvrvwV79qAUe/JUCYP+L9gj+jo0G9uiFEP5gBKL+8Pas/VP88vzUWa7+ap98+/6Epv4zOgD72Kbg/uvqlv3v6j79Fc/0++zTrvzm3jr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvvOy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABtfoPQAAAACxT+q/AAAAAHp0oz0AAAAAd0z8PwAAAAAEnGI9AAAAACy5+z8AAAAAcnXKPQAAAAAb69+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1KRAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyH5D0AAAAAtb7rvwAAAABOHUk8AAAAAL7d6T8AAAAA6IE3vQAAAAAh5P4/AAAAALyim7wAAAAAPaThvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxm/LMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDh/S09AAAAAC8f7L8AAAAAFkTqPAAAAAAgquw/AAAAAJ3dOT0AAAAAC3fpPwAAAADzDQ89AAAAAI3G/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/iwu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdflBvQAAAABbJPS/AAAAAHX/kz0AAAAAoE7aPwAAAACAq5W9AAAAAL7W4z8AAAAAiFAHPgAAAAAXPu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJst0iV0Lc+MAWyUTegDjAF0lEdAqXJL3ueBhHV9lChoBkdAngYjisGPgmgHTegDaAhHQKlzDIsiB5J1fZQoaAZHQJFrSQhfShJoB03oA2gIR0Cpd7Fd9lVcdX2UKGgGR0CdRIZG8VYZaAdN6ANoCEdAqXiu0qpcX3V9lChoBkdAoHUgyhzvJGgHTegDaAhHQKl/inyd4FB1fZQoaAZHQKCLyuOjqOdoB03oA2gIR0CpgAmHYYixdX2UKGgGR0CcgQcm0E5iaAdN6ANoCEdAqYNRxeb/fnV9lChoBkdAhlnz+vQnhWgHTegDaAhHQKmEQn4wh4d1fZQoaAZHQKDfp45cTrVoB03oA2gIR0Cpi72OQyRCdX2UKGgGR0CZqSYuTRplaAdN6ANoCEdAqYxuTxG2C3V9lChoBkdAn2SwvYe1bGgHTegDaAhHQKmRj7oB7u51fZQoaAZHQKEDCW9lEqloB03oA2gIR0CpkxoyKvV3dX2UKGgGR0CSxusijcmCaAdN6ANoCEdAqZqIvalDW3V9lChoBkdAoOridQO4G2gHTegDaAhHQKmbBvOQhfV1fZQoaAZHQKCcUvTPSlZoB03oA2gIR0CpnnANoakzdX2UKGgGR0CgR+Oa4MF2aAdN6ANoCEdAqZ9vUBnzx3V9lChoBkdAoI1HDLr5ZmgHTegDaAhHQKmmakadc0N1fZQoaAZHQJ8asPy08eVoB03oA2gIR0CppuTkhib2dX2UKGgGR0CgRHkRJ2+xaAdN6ANoCEdAqaslVNpM6HV9lChoBkdAoTrLbpNbkmgHTegDaAhHQKmslleWv8t1fZQoaAZHQJhF9aHKwINoB03oA2gIR0Cpte8Ti83/dX2UKGgGR0CWbbrZamoBaAdN6ANoCEdAqbZlDneSCHV9lChoBkdAnOmuAuqWC2gHTegDaAhHQKm5sLfk3jx1fZQoaAZHQJ6oCPOpsGhoB03oA2gIR0Cpuqqxkd3jdX2UKGgGR0CgmWqOcUdraAdN6ANoCEdAqcGeo1k1/HV9lChoBkdAnxITfek562gHTegDaAhHQKnCFh3JPqN1fZQoaAZHQJ5qYpPRArxoB03oA2gIR0CpxWqbz9S/dX2UKGgGR0CfsXd0JWvKaAdN6ANoCEdAqcZg3Ns3ynV9lChoBkdAmaij/IbOvGgHTegDaAhHQKnRCGs3hn91fZQoaAZHQJemaSNfgJloB03oA2gIR0Cp0YQn6VMVdX2UKGgGR0CYDxf7rLQpaAdN6ANoCEdAqdTmQOnVG3V9lChoBkdAkREx5HEuQWgHTegDaAhHQKnV6FEiMYN1fZQoaAZHQJjhOIwdsBRoB03oA2gIR0Cp3P2uoxYadX2UKGgGR0CQP4L1EmY0aAdN6ANoCEdAqd16+i8Fp3V9lChoBkdAlUrZUcXFcmgHTegDaAhHQKng3b1RLsd1fZQoaAZHQJKWdIsiB5JoB03oA2gIR0Cp4dMHKOktdX2UKGgGR0CU8DZgXuVpaAdN6ANoCEdAqeqgAGSpznV9lChoBkdAl2AqvicXnGgHTegDaAhHQKnrZmXgLql1fZQoaAZHQJLcbneSB9VoB03oA2gIR0Cp8FZ4W1twdX2UKGgGR0CSPxOeJ53UaAdN6ANoCEdAqfFaZH/cWXV9lChoBkdAmGrgmzByj2gHTegDaAhHQKn4acLBsRB1fZQoaAZHQJqJclHBk7RoB03oA2gIR0Cp+OZcLSeAdX2UKGgGR0CamWC/47A+aAdN6ANoCEdAqfxOEEkjYHV9lChoBkdAnFQBradtmGgHTegDaAhHQKn9XJEpiJB1fZQoaAZHQJpJHhhpg1FoB03oA2gIR0CqBO6reZXudX2UKGgGR0COk1lXA/LUaAdN6ANoCEdAqgWi8zyjHnV9lChoBkdAm9lPrOZ9eGgHTegDaAhHQKoK1UNKAax1fZQoaAZHQJs3bcTJyQxoB03oA2gIR0CqDGoMrmQsdX2UKGgGR0CbTYNLUTcqaAdN6ANoCEdAqhPZAOavzXV9lChoBkdAnm1gSOBDomgHTegDaAhHQKoUUmWt2cJ1fZQoaAZHQJmKq814xDdoB03oA2gIR0CqF6VV5rxidX2UKGgGR0CWAmTQVsUJaAdN6ANoCEdAqhikHWz4UXV9lChoBkdAmvczUNKAa2gHTegDaAhHQKofsksSTQp1fZQoaAZHQJyIunUDuBtoB03oA2gIR0CqICy+Yc//dX2UKGgGR0CWtoLn9vS/aAdN6ANoCEdAqiRqsS00FnV9lChoBkdAlBuSqU/wAmgHTegDaAhHQKol/wNLDht1fZQoaAZHQIojzQJHAh1oB03oA2gIR0CqL14SxqwhdX2UKGgGR0CM6CieNDMNaAdN6ANoCEdAqi/X5HmRvHV9lChoBkdAiYPVOKwY+GgHTegDaAhHQKozI1l5GBp1fZQoaAZHQIcSYWLxZuBoB03oA2gIR0CqNBnzH0btdX2UKGgGR0CN3strbg0kaAdN6ANoCEdAqjsi99MK1HV9lChoBkdAhx8CRwIdEWgHTegDaAhHQKo7mzvZyuJ1fZQoaAZHQIU2MFyJbdJoB03oA2gIR0CqPxHMlkYodX2UKGgGR0CSs0Z75VOsaAdN6ANoCEdAqkBFHH3lCHV9lChoBkdAleuZBLPD52gHTegDaAhHQKpKx6HCXQd1fZQoaAZHQJiLbUH6dlNoB03oA2gIR0CqS0THCGeudX2UKGgGR0CSkGbH6uW9aAdN6ANoCEdAqk7HAAQxvnV9lChoBkdAmBsGe6I3zmgHTegDaAhHQKpPxk1dgOV1fZQoaAZHQJR3ZcyFfzBoB03oA2gIR0CqVtSjYZl4dX2UKGgGR0CXz+LcsUZfaAdN6ANoCEdAqldNaB7NS3V9lChoBkdAjkJGM4tHx2gHTegDaAhHQKpal4rz5Gl1fZQoaAZHQJDGHfoA4n5oB03oA2gIR0CqW45xzaK2dX2UKGgGR0CXh41yeZogaAdN6ANoCEdAqmTmgJ1JUnV9lChoBkdAlD7C2c8Tz2gHTegDaAhHQKplpYTTOPh1fZQoaAZHQJkx7QzDXOJoB03oA2gIR0CqaeShi9ZidX2UKGgGR0CTjiSL61staAdN6ANoCEdAqmrs8La24XV9lChoBkdAm1iN1loUSWgHTegDaAhHQKpx+801qFh1fZQoaAZHQJervJjlPrRoB03oA2gIR0CqcnNzCDVZdX2UKGgGR0Cbf4H4GlhxaAdN6ANoCEdAqnXERODaoXV9lChoBkdAjcfpudf9gmgHTegDaAhHQKp2wU1yeZp1fZQoaAZHQJ1UG02LpA5oB03oA2gIR0Cqfmwb+98JdX2UKGgGR0Cc1MEWqLjxaAdN6ANoCEdAqn8iDqW1MXV9lChoBkdAhYYe1jRUm2gHTegDaAhHQKqEV3ai9Ix1fZQoaAZHQJ3mnor4FidoB03oA2gIR0Cqhd/ZmI0qdX2UKGgGR0CciOfSQYDUaAdN6ANoCEdAqoz794u9OHV9lChoBkdAbkNiw0O3D2gHTegDaAhHQKqNdyoXKr91fZQoaAZHQJxrZ6mfoRtoB03oA2gIR0CqkM+hwl0HdX2UKGgGR0CTFNjIJZ4faAdN6ANoCEdAqpHSPU8V6HV9lChoBkdAlmSWDDjzZ2gHTegDaAhHQKqYxMV1wHZ1fZQoaAZHQJzonDrJKapoB03oA2gIR0CqmTxMewLWdX2UKGgGR0CJBwM/hVENaAdN6ANoCEdAqp2SVY6nznV9lChoBkdAmRTHwb2lEmgHTegDaAhHQKqfGC+10DF1fZQoaAZHQJYQ+R/3FkxoB03oA2gIR0CqqC3xOLzgdX2UKGgGR0CcEcxUNrj6aAdN6ANoCEdAqqiwV9F4LXV9lChoBkdAlAjGz8gp0GgHTegDaAhHQKqsEwIMSbp1fZQoaAZHQJoWVv3rUspoB03oA2gIR0CqrRJRoAXEdX2UKGgGR0CXC2UrkKeDaAdN6ANoCEdAqrQk/8l5W3V9lChoBkdAmB00X531SWgHTegDaAhHQKq0oNLlFMJ1fZQoaAZHQJ26rVurIYFoB03oA2gIR0Cqt/bUG3WndX2UKGgGR0CLTHpC8e0YaAdN6ANoCEdAqrkm4TbnHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9214239e19901cba4051cb58bfea6e184906649dcaeed4dd1a879e91a5b8e8f
3
+ size 1114575
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1805.048271879577, "std_reward": 149.79926279426087, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T10:21:25.951460"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b806ea1ac549aed2953dbe539f653b2aed9a16da2152717a25d01b65309df046
3
+ size 2136