--- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl datasets: - Salesforce/xlam-function-calling-60k pipeline_tag: text-generation library_name: peft --- # Model Card for Model ID This model is a function calling version of [microsoft/phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) finetuned on the [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) dataset. # Uploaded model - **Developed by:** akshayballal - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit ### Usage ```python from unsloth import FastLanguageModel max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "outputs/checkpoint-3000", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = 1024, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference tools = [ { "name": "upcoming", "description": "Fetches upcoming CS:GO matches data from the specified API endpoint.", "parameters": { "content_type": { "description": "The content type for the request, default is 'application/json'.", "type": "str", "default": "application/json", }, "page": { "description": "The page number to retrieve, default is 1.", "type": "int", "default": "1", }, "limit": { "description": "The number of matches to retrieve per page, default is 10.", "type": "int", "default": "10", }, }, } ] messages = [ { "role": "user", "content": f"You are a helpful assistant. Below are the tools that you have access to. \n\n### Tools: \n{tools} \n\n### Query: \n{query} \n", }, ] input = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) output = model.generate( input_ids=input, max_new_tokens=512, temperature=0.0 ) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) ``` [](https://github.com/unslothai/unsloth)