Upload vqvae.py with huggingface_hub
Browse files
vqvae.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from modules import Encoder, Decoder
|
5 |
+
from modules import Codebook
|
6 |
+
|
7 |
+
|
8 |
+
class VQBASE(nn.Module):
|
9 |
+
def __init__(self, ddconfig, n_embed, embed_dim, init_steps, reservoir_size):
|
10 |
+
super(VQBASE, self).__init__()
|
11 |
+
self.encoder = Encoder(**ddconfig)
|
12 |
+
self.decoder = Decoder(**ddconfig)
|
13 |
+
self.quantize = Codebook(n_embed, embed_dim, beta=0.25, init_steps=init_steps, reservoir_size=reservoir_size) # TODO: change length_one_epoch
|
14 |
+
self.quant_conv = nn.Sequential(
|
15 |
+
nn.Conv2d(ddconfig["z_channels"], embed_dim, 1),
|
16 |
+
nn.SyncBatchNorm(embed_dim)
|
17 |
+
)
|
18 |
+
self.post_quant_conv = nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
19 |
+
|
20 |
+
def encode(self, x):
|
21 |
+
h = self.encoder(x)
|
22 |
+
h = self.quant_conv(h)
|
23 |
+
quant, emb_loss, info = self.quantize(h)
|
24 |
+
return quant, emb_loss, info
|
25 |
+
|
26 |
+
def decode(self, quant):
|
27 |
+
quant = self.post_quant_conv(quant)
|
28 |
+
dec = self.decoder(quant)
|
29 |
+
return dec
|
30 |
+
|
31 |
+
def decode_code(self, code_b):
|
32 |
+
quant_b = self.quantize.embed_code(code_b)
|
33 |
+
dec = self.decode(quant_b)
|
34 |
+
return dec
|
35 |
+
|
36 |
+
def forward(self, input):
|
37 |
+
quant, diff = self.encode(input)
|
38 |
+
dec = self.decode(quant)
|
39 |
+
return dec, diff
|
40 |
+
|