mode: pretrain_image devices: - 0 - 1 - 2 - 3 - 4 - 5 - 6 #- 7 total_steps: 4700000 accumulate_grad: 5 resume: True #checkpoint: /home/ubuntu/Make-A-Scene/outputs/pretrain_image/2022-06-10/06-36-07/checkpoint.pt checkpoint: /home/ubuntu/Make-A-Scene/outputs/pretrain_image/2022-06-13/22-05-22/checkpoint_21.0.pt log_period: 50 save_period: 1000 batch_size: 3 # 192 for 256 model and 128 for 512 model model: _target_: models.VQBASE embed_dim: 256 n_embed: 8192 init_steps: 3000 reservoir_size: 12500 # 2e5 / 8 ddconfig: z_channels: 256 in_channels: 3 out_channels: 3 channels: [128, 128, 128, 256, 512, 512] # [1, 1, 2, 4, 4] num_res_blocks: 2 resolution: 512 attn_resolutions: - 32 dropout: 0.0 optimizer: vq: lr: 5e-6 betas: - 0.5 - 0.9 disc: lr: 4.5e-6 betas: - 0.5 - 0.9 dataset: _target_: Data.dataset_preprocessor_web.S3ProcessedDataset resampled: True names: - cc3m - cc12m # path: file:D:/PycharmProjects/Make-A-Scene/server/Make-A-Scene/dataset/coco/{00000..00004}.tar # path: file:D:/PycharmProjects/Make-A-Scene/server/Make-A-Scene/dataset/coco/great_dataset.tar loss: #_target_: losses.VQVAEWithBCELoss _target_: losses.loss_img.VQLPIPSWithDiscriminator disc_start: 250001 disc_weight: 0.8 codebook_weight: 1.0 dataloader: batch_size: ${batch_size} num_workers: 8 pin_memory: True hydra: job: chdir: True run: dir: ./outputs/${mode}/${now:%Y-%m-%d}/${now:%H-%M-%S}