alanrice commited on
Commit
de7c811
1 Parent(s): 5b5c73a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-large-xls-r-1b-irish-colab
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice
17
+ type: common_voice
18
+ config: ga-IE
19
+ split: train+validation
20
+ args: ga-IE
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.46911764705882353
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-large-xls-r-1b-irish-colab
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.0795
35
+ - Wer: 0.4691
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 30
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | 1.6902 | 12.12 | 400 | 1.1158 | 0.5959 |
71
+ | 0.2988 | 24.24 | 800 | 1.1375 | 0.5094 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.25.1
77
+ - Pytorch 1.10.0+cu113
78
+ - Datasets 2.0.0
79
+ - Tokenizers 0.13.2