---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
library_name: peft
model-index:
- name: whisper-small-finetuned
results: []
---
[](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc)
[](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc)
[](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc)
[](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc)
# whisper-small-finetuned
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.4961
- eval_wer: 164.6512
- eval_runtime: 45.3429
- eval_samples_per_second: 0.441
- eval_steps_per_second: 0.022
- epoch: 99.01
- step: 100
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 10
- training_steps: 100
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.5.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1