--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 library_name: peft model-index: - name: whisper-small-finetuned results: [] --- [Visualize in Weights & Biases](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc) [Visualize in Weights & Biases](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc) [Visualize in Weights & Biases](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc) [Visualize in Weights & Biases](https://wandb.ai/albertusgeyser-private-email/huggingface/runs/8lqmabgc) # whisper-small-finetuned This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - eval_loss: 2.4961 - eval_wer: 164.6512 - eval_runtime: 45.3429 - eval_samples_per_second: 0.441 - eval_steps_per_second: 0.022 - epoch: 99.01 - step: 100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1