cyber-meow commited on
Commit
8522c78
·
1 Parent(s): 97b8469
grasswonder-umamusume/README.md CHANGED
@@ -35,7 +35,7 @@ Trained with [Kohya trainer](https://github.com/Linaqruf/kohya-trainer)
35
  ![native-00025-570458801](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/grasswonder-umamusume/samples/native-00025-570458801.png)
36
 
37
 
38
- ### LoRA embedding
39
 
40
  Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
41
 
@@ -44,7 +44,7 @@ Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
44
  - learning rate 1e-4
45
  - batch size 6
46
  - clip skip 2
47
- - number of training steps 7520 (20 epochs)
48
 
49
  *Examples*
50
  ![lora-00014-2366006784](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/grasswonder-umamusume/samples/lora-00014-2366006784.png)
 
35
  ![native-00025-570458801](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/grasswonder-umamusume/samples/native-00025-570458801.png)
36
 
37
 
38
+ ### LoRA
39
 
40
  Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
41
 
 
44
  - learning rate 1e-4
45
  - batch size 6
46
  - clip skip 2
47
+ - number of training steps 7520/6 (20 epochs)
48
 
49
  *Examples*
50
  ![lora-00014-2366006784](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/grasswonder-umamusume/samples/lora-00014-2366006784.png)
onimai/README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This folder contains models trained for the two characters oyama mahiro and oyama mihari.
2
+
3
+ Trigger words are
4
+ - oyama mahiro
5
+ - oyama mihari
6
+
7
+ To get anime style you can add `aniscreen`
8
+
9
+ At this point I feel like having oyama in the trigger is probably a bad idea because it seems to cause more character blending.
10
+
11
+
12
+ ### Dataset
13
+
14
+ Total size 338
15
+
16
+ screenshots 127
17
+ - Mahiro: 51
18
+ - Mihari: 46
19
+ - Mahiro + Mihari: 30
20
+
21
+ fanart 92
22
+ - Mahiro: 68
23
+ - Mihari: 8
24
+ - Mahiro + Mihari: 16
25
+
26
+ Regularization 119
27
+
28
+ For training the following repeat is used
29
+ - 1 for Mahiro and reg
30
+ - 2 for Mihari
31
+ - 4 for Mahiro + Mihari
32
+
33
+
34
+ ### Base model
35
+
36
+ [NMFSAN](https://huggingface.co/Crosstyan/BPModel/blob/main/NMFSAN/README.md)
37
+
38
+
39
+ ### LoRA
40
+
41
+ Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
42
+
43
+ - training of text encoder turned on
44
+ - network dimension 64
45
+ - learning rate scheduler constant
46
+ - learning rate 1e-4 and 1e-5 (two separate runs)
47
+ - batch size 7
48
+ - clip skip 2
49
+ - number of training epochs 45
50
+
51
+
52
+ ### Comparaison
53
+
54
+ learning rate 1e-4
55
+
56
+ ![grid-00010-492069042](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/onimai/samples/grid-00010-492069042.png)
57
+
58
+ learning rate 1e-5
59
+ ![grid-00017-492069042](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/onimai/samples/grid-00017-492069042.png)
60
+
61
+ Normally with 2 repeats and 45 epochs we should have perfectly learned the character with dreambooth (using typically lr=1e-6), but here with lr=1e-5 it does not seem to work very well. lr=1e-4 produces quite correct results but there is a risk of overfitting.
62
+
63
+ ### Examples
64
+
65
+ ![00026-4010692159](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/onimai/samples/00026-4010692159.png)
66
+ ![00030-286171376](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/onimai/samples/00030-286171376.png)
67
+ ![00034-2431887953](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/onimai/samples/00034-2431887953.png)
onimai/samples/00026-4010692159.png ADDED
onimai/samples/00030-286171376.png ADDED
onimai/samples/00034-2431887953.png ADDED
onimai/samples/grid-00010-492069042.png ADDED
onimai/samples/grid-00017-492069042.png ADDED
suremio-nozomizo-eilanya-maplesally/.README.md.swp DELETED
Binary file (12.3 kB)
 
suremio-nozomizo-eilanya-maplesally/README.md CHANGED
@@ -44,6 +44,7 @@ Regularization 276
44
 
45
  [NMFSAN](https://huggingface.co/Crosstyan/BPModel/blob/main/NMFSAN/README.md) so you can have different styles
46
 
 
47
  ### Native training
48
 
49
  Trained with [Kohya trainer](https://github.com/Linaqruf/kohya-trainer)
@@ -60,7 +61,9 @@ Trained with [Kohya trainer](https://github.com/Linaqruf/kohya-trainer)
60
  ![native-00010-2248582025](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00010-2248582025.png)
61
  ![native-00014-3296158149](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00014-3296158149.png)
62
  ![native-00048-3129463315](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00048-3129463315.png)
63
- ### LoRA embedding
 
 
64
 
65
  Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
66
 
@@ -69,7 +72,7 @@ Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
69
  - learning rate 1e-4
70
  - batch size 6
71
  - clip skip 2
72
- - number of training steps 69700 (50 epochs)
73
 
74
  *Examples*
75
 
 
44
 
45
  [NMFSAN](https://huggingface.co/Crosstyan/BPModel/blob/main/NMFSAN/README.md) so you can have different styles
46
 
47
+
48
  ### Native training
49
 
50
  Trained with [Kohya trainer](https://github.com/Linaqruf/kohya-trainer)
 
61
  ![native-00010-2248582025](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00010-2248582025.png)
62
  ![native-00014-3296158149](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00014-3296158149.png)
63
  ![native-00048-3129463315](https://huggingface.co/alea31415/YuriDiffusion/resolve/main/suremio-nozomizo-eilanya-maplesally/samples/native-00048-3129463315.png)
64
+
65
+
66
+ ### LoRA
67
 
68
  Please refer to [LoRA Training Guide](https://rentry.org/lora_train)
69
 
 
72
  - learning rate 1e-4
73
  - batch size 6
74
  - clip skip 2
75
+ - number of training steps 69700/6 (50 epochs)
76
 
77
  *Examples*
78