alefarasin
commited on
Commit
•
c2ebb0e
1
Parent(s):
ded669f
Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1436.21 +/- 233.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26bfc23bbdc1bc4c599b06fa2371f50a8168645c91443a79dcbf95851e8f1c12
|
3 |
+
size 129209
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e4149d830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e4149d8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e4149d950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e4149d9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8e4149da70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8e4149db00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e4149db90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8e4149dc20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e4149dcb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e4149dd40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e4149ddd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8e414dce70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 1891832,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1660203129.3013718,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAV/OFvWcm3r+3OgHAx9eWvuL6476PKc67n1sJv/nyxb4fFQY/2PwgvxILpb52y2a/JF9xvuwNtT1nlxw/zLg/PzpioT9Obky8HTF2Phr7gz8Gyr69z7gkvyqFTD+NQLg+8bO7vzHE0T6Vs/+/6OdHPwcnOj4OCd+/3/QGwN1K5b7PU3Y/+WsJv6DPUz4W+32/IvhBP9uLlzyf7yM/yM5LPhqfDT+S5qC+A8I5P73SQb8SuaA/yD0OvEkYNz70R+I+e+mGPmxacD/TSV4/t26Yv/Gzu78xxNE+QCYAP+jnRz/l5wQ+uLpEPpQvJT9tG78/paTBvzAVir+FjAY/eQzWvlNKLT/R93O/RshwPuXI7b8IDne/vAtAP9072L6QYoY/ZdP7PWv/BT7aWjg/CN3/vnRGI79Exti+2T+ovnbtAEDxs7u/McTRPpWz/7/J6qO/5BEavkVggz/X0r4+TdWlPzi39b/4EQM/SW9sPuagnT3bavU+eG26P3teCj6o6mE+DgePvzX/V749OGG+rPKsvgyFiD66ED6/5l9NPo5ZBr36WAi/pOZCP4m9Mr/5e5y+4pIuPzHE0T5AJgA/yeqjv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHj76bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICuuw0+AAAAAKnb778AAAAAi4/2vAAAAAAQE/Y/AAAAAMf4x70AAAAAzun1PwAAAAD/+RA9AAAAALZZ2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8v+c1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf4gHvgAAAAArQfK/AAAAANHqLj0AAAAAW1nuPwAAAAByPik9AAAAAEVa+z8AAAAAxXwPPgAAAAAohPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA++wxtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLvKzz0AAAAA0ILfvwAAAAB/vQM+AAAAAKyc/z8AAAAAp0rEvQAAAAASmew/AAAAABp4Vz0AAAAAntDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOmUwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJwOC9AAAAAEic9r8AAAAAzo6NvQAAAAB26+0/AAAAAM77arsAAAAA+3P/PwAAAADEk2M9AAAAAL/8+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.05409600000000003,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJze97fHggqMAWyUTegDjAF0lEdApk29hCtzS3V9lChoBkdAnQHIjKPn0WgHTegDaAhHQKZO35WRzRx1fZQoaAZHQJh/zVbzK9xoB03oA2gIR0CmT2LLyMDPdX2UKGgGR0CdVEXDFZPmaAdN6ANoCEdAplHRvegte3V9lChoBkdAlyoORxLkCGgHTegDaAhHQKZaD6a9bot1fZQoaAZHQJtMBiTdLxtoB03oA2gIR0CmWyeQ2dd3dX2UKGgGR0Cfw/tVJcxCaAdN6ANoCEdAplupyQxN7HV9lChoBkdAmTV86q8142gHTegDaAhHQKZeG4G2TgV1fZQoaAZHQJT8X+717IFoB03oA2gIR0CmZm/mknCwdX2UKGgGR0CUoq1HvttzaAdN6ANoCEdApmeFEAo5P3V9lChoBkdAmZSsCo0hvGgHTegDaAhHQKZoCAUcn3N1fZQoaAZHQJpgjPRiPQxoB03oA2gIR0CmaovD50r9dX2UKGgGR0CcK9X1rZanaAdN6ANoCEdApnLixC6YmnV9lChoBkdAnVEGiYb832gHTegDaAhHQKZz+M7U5Ml1fZQoaAZHQJOiiAH3UQVoB03oA2gIR0CmdHu4G2TgdX2UKGgGR0CaLy9wWFewaAdN6ANoCEdApncEUZeiSXV9lChoBkdAmchvz4DcM2gHTegDaAhHQKZ/LA1vVEx1fZQoaAZHQJxKIDwH7gtoB03oA2gIR0CmgELdepn6dX2UKGgGR0CXgb5Lh73PaAdN6ANoCEdApoDKGzru6XV9lChoBkdAmgcW2PT5PGgHTegDaAhHQKaDQP+XJHR1fZQoaAZHQJr4U7o0Q9RoB03oA2gIR0Cmi2rzoUzsdX2UKGgGR0CYLnSTyJ9BaAdN6ANoCEdApoyCGvfTC3V9lChoBkdAm7+1BhQWN2gHTegDaAhHQKaNB+m3vx91fZQoaAZHQJkoM1qFh5RoB03oA2gIR0Cmj4FtTDO1dX2UKGgGR0CYrJZFXq7iaAdN6ANoCEdAppfjxwyZa3V9lChoBkdAmPPcM3IdVGgHTegDaAhHQKaY+tFrl/91fZQoaAZHQJei+39aUzNoB03oA2gIR0CmmX7qQiiZdX2UKGgGR0CZWdC8e0XxaAdN6ANoCEdAppv24wyqMnV9lChoBkdAlngtWQwK0GgHTegDaAhHQKalBpblijN1fZQoaAZHQJcfpmOEM9doB03oA2gIR0Cmpjt4Z/CqdX2UKGgGR0CZkn2xptaZaAdN6ANoCEdApqa8qWkadnV9lChoBkdAlyEZLytmtmgHTegDaAhHQKapSegctGx1fZQoaAZHQJltykwevIRoB03oA2gIR0CmsXoC+10DdX2UKGgGR0CaHIQGfPHDaAdN6ANoCEdAprKXqFAVwnV9lChoBkdAmnWe5z5oG2gHTegDaAhHQKazHLV4HHF1fZQoaAZHQJe73ksBhhJoB03oA2gIR0CmtZhWYF7ldX2UKGgGR0CXtQ5le4TcaAdN6ANoCEdApr3E7IT4+XV9lChoBkdAl8A3izcAR2gHTegDaAhHQKa+4N5t3wF1fZQoaAZHQJb5Eiliz9loB03oA2gIR0Cmv2Yd6sySdX2UKGgGR0CU+OaW5YozaAdN6ANoCEdApsHfyup0fnV9lChoBkdAlYGYZl4C62gHTegDaAhHQKbKKrsByS51fZQoaAZHQI7U8O5J9RdoB03oA2gIR0Cmyz8/lhgFdX2UKGgGR0CUsevCdjG2aAdN6ANoCEdApsu//3nIQ3V9lChoBkdAkrzThUBGQWgHTegDaAhHQKbOQxbB42V1fZQoaAZHQIiY+YIBzWBoB03oA2gIR0Cm1psyad+YdX2UKGgGR0CTQIdU83dcaAdN6ANoCEdAptew7T2FnXV9lChoBkdAlyrGBWgezWgHTegDaAhHQKbYMpVCHAR1fZQoaAZHQJh0ig5BC2NoB03oA2gIR0Cm2qyd4FA3dX2UKGgGR0CY4C1/lQuVaAdN6ANoCEdApuLWCXhOxnV9lChoBkdAme88jRlYl2gHTegDaAhHQKbj8mVJL/V1fZQoaAZHQJqSG11GLDRoB03oA2gIR0Cm5HUbkwN9dX2UKGgGR0CXxpsGPgejaAdN6ANoCEdApub2/zreInV9lChoBkdAkzHcpG4I8mgHTegDaAhHQKbvGWw/xDt1fZQoaAZHQJs/+hYeT3ZoB03oA2gIR0Cm8DYWk8A8dX2UKGgGR0CYpc/20zCUaAdN6ANoCEdApvC7KFIuoXV9lChoBkdAlHj+EIw/PmgHTegDaAhHQKbzPORDCxh1fZQoaAZHQJFhGAy2x6hoB03oA2gIR0Cm+7N+1Bt2dX2UKGgGR0CSBweyzHCGaAdN6ANoCEdApvzZ4fOlf3V9lChoBkdAiFGxiw0O3GgHTegDaAhHQKb9ZU6PsAx1fZQoaAZHQIdpnFglWwNoB03oA2gIR0Cm//FfAsTWdX2UKGgGR0CT3mPI4lyBaAdN6ANoCEdApwg6g00m+nV9lChoBkdAlVgJJwsGxGgHTegDaAhHQKcJWa2F36h1fZQoaAZHQJPHPuQZGaxoB03oA2gIR0CnCeEKmbb2dX2UKGgGR0CT5EPSDyvtaAdN6ANoCEdApwxx1/2Cd3V9lChoBkdAfAXGjKxLTWgHTegDaAhHQKcU2Qe3hGZ1fZQoaAZHQJQ1xsGgSOBoB03oA2gIR0CnFfzDXOGCdX2UKGgGR0CQ0ysKsuFpaAdN6ANoCEdApxaAS39aU3V9lChoBkdAlN3KbayrxWgHTegDaAhHQKcY/l1bJOp1fZQoaAZHQJMyqLMs6JZoB03oA2gIR0CnIUlEiMYNdX2UKGgGR0CSfbG7z06HaAdN6ANoCEdApyJnck+otXV9lChoBkdAkFOZMg2ZRmgHTegDaAhHQKci6UlAu7J1fZQoaAZHQJCR3X18LKFoB03oA2gIR0CnJWWnsLOSdX2UKGgGR0CWPO2QGOdYaAdN6ANoCEdApy20YsNDt3V9lChoBkdAmXKk4//vOWgHTegDaAhHQKcuzYQJ5Vx1fZQoaAZHQJXdVXZGrjpoB03oA2gIR0CnL085bQkYdX2UKGgGR0CUfEujRD1HaAdN6ANoCEdApzHU50bLlnV9lChoBkdAldc2qxTsIGgHTegDaAhHQKc6Jq/M4cZ1fZQoaAZHQJL6J7fHggpoB03oA2gIR0CnOz04zabndX2UKGgGR0CBn8miQDFIaAdN6ANoCEdApzvDm+0w8HV9lChoBkdAkztlnEl3QmgHTegDaAhHQKc+U3+dbxF1fZQoaAZHQI06y15Sm65oB03oA2gIR0CnRo3N1QqJdX2UKGgGR0CTvAnOSntOaAdN6ANoCEdAp0eyPXCj13V9lChoBkdAlBgglSjxkWgHTegDaAhHQKdIMbm2b5N1fZQoaAZHQJUlg6uGKyhoB03oA2gIR0CnSrmJ3xFzdX2UKGgGR0Cb0tGcFyJbaAdN6ANoCEdAp1MXv+fh/HV9lChoBkdAgXZ034sVcmgHTegDaAhHQKdUNl/Yrax1fZQoaAZHQIbvMjHGS6loB03oA2gIR0CnVLwQtjCpdX2UKGgGR0CKKbMh5gPVaAdN6ANoCEdAp1dQ0j1PFnV9lChoBkdAhofOMuOCG2gHTegDaAhHQKdfq0elsP91fZQoaAZHQI2DONkvsZ5oB03oA2gIR0CnYMRagVXWdX2UKGgGR0CQoCfkWAPNaAdN6ANoCEdAp2FFU2kzoHV9lChoBkdAkKv1HavicWgHTegDaAhHQKdjxq7iADt1fZQoaAZHQJj56TvAoG9oB03oA2gIR0CnbAj9OymidX2UKGgGR0CV28nXNC7caAdN6ANoCEdAp20h//echHV9lChoBkdAk53e+AVfu2gHTegDaAhHQKdtpK9PDYR1fZQoaAZHQJJeLIq9XcRoB03oA2gIR0CncCnoPkJbdX2UKGgGR0CXpl3H7xd6aAdN6ANoCEdAp3hOr+5vtXV9lChoBkdAmAjfl2eQMmgHTegDaAhHQKd5aflIVdp1fZQoaAZHQJiDaPgeii9oB03oA2gIR0Cneeq02LpBdX2UKGgGR0CTutZwGW2PaAdN6ANoCEdAp3xbCYTkAHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 59119,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6ddee1a2192ccb9ff70256248cc9e57971e05b5b8253d97587dd6db75b79798
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d1f383cccf1b23aa7fe4aa4d66ef769c0bad1609bbe57305a903e15a2aafc5b
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e4149d830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e4149d8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e4149d950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e4149d9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f8e4149da70>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e4149db00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e4149db90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e4149dc20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e4149dcb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e4149dd40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e4149ddd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8e414dce70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1891832, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660203129.3013718, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAV/OFvWcm3r+3OgHAx9eWvuL6476PKc67n1sJv/nyxb4fFQY/2PwgvxILpb52y2a/JF9xvuwNtT1nlxw/zLg/PzpioT9Obky8HTF2Phr7gz8Gyr69z7gkvyqFTD+NQLg+8bO7vzHE0T6Vs/+/6OdHPwcnOj4OCd+/3/QGwN1K5b7PU3Y/+WsJv6DPUz4W+32/IvhBP9uLlzyf7yM/yM5LPhqfDT+S5qC+A8I5P73SQb8SuaA/yD0OvEkYNz70R+I+e+mGPmxacD/TSV4/t26Yv/Gzu78xxNE+QCYAP+jnRz/l5wQ+uLpEPpQvJT9tG78/paTBvzAVir+FjAY/eQzWvlNKLT/R93O/RshwPuXI7b8IDne/vAtAP9072L6QYoY/ZdP7PWv/BT7aWjg/CN3/vnRGI79Exti+2T+ovnbtAEDxs7u/McTRPpWz/7/J6qO/5BEavkVggz/X0r4+TdWlPzi39b/4EQM/SW9sPuagnT3bavU+eG26P3teCj6o6mE+DgePvzX/V749OGG+rPKsvgyFiD66ED6/5l9NPo5ZBr36WAi/pOZCP4m9Mr/5e5y+4pIuPzHE0T5AJgA/yeqjv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHj76bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICuuw0+AAAAAKnb778AAAAAi4/2vAAAAAAQE/Y/AAAAAMf4x70AAAAAzun1PwAAAAD/+RA9AAAAALZZ2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8v+c1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf4gHvgAAAAArQfK/AAAAANHqLj0AAAAAW1nuPwAAAAByPik9AAAAAEVa+z8AAAAAxXwPPgAAAAAohPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA++wxtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLvKzz0AAAAA0ILfvwAAAAB/vQM+AAAAAKyc/z8AAAAAp0rEvQAAAAASmew/AAAAABp4Vz0AAAAAntDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOmUwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJwOC9AAAAAEic9r8AAAAAzo6NvQAAAAB26+0/AAAAAM77arsAAAAA+3P/PwAAAADEk2M9AAAAAL/8+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.05409600000000003, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJze97fHggqMAWyUTegDjAF0lEdApk29hCtzS3V9lChoBkdAnQHIjKPn0WgHTegDaAhHQKZO35WRzRx1fZQoaAZHQJh/zVbzK9xoB03oA2gIR0CmT2LLyMDPdX2UKGgGR0CdVEXDFZPmaAdN6ANoCEdAplHRvegte3V9lChoBkdAlyoORxLkCGgHTegDaAhHQKZaD6a9bot1fZQoaAZHQJtMBiTdLxtoB03oA2gIR0CmWyeQ2dd3dX2UKGgGR0Cfw/tVJcxCaAdN6ANoCEdAplupyQxN7HV9lChoBkdAmTV86q8142gHTegDaAhHQKZeG4G2TgV1fZQoaAZHQJT8X+717IFoB03oA2gIR0CmZm/mknCwdX2UKGgGR0CUoq1HvttzaAdN6ANoCEdApmeFEAo5P3V9lChoBkdAmZSsCo0hvGgHTegDaAhHQKZoCAUcn3N1fZQoaAZHQJpgjPRiPQxoB03oA2gIR0CmaovD50r9dX2UKGgGR0CcK9X1rZanaAdN6ANoCEdApnLixC6YmnV9lChoBkdAnVEGiYb832gHTegDaAhHQKZz+M7U5Ml1fZQoaAZHQJOiiAH3UQVoB03oA2gIR0CmdHu4G2TgdX2UKGgGR0CaLy9wWFewaAdN6ANoCEdApncEUZeiSXV9lChoBkdAmchvz4DcM2gHTegDaAhHQKZ/LA1vVEx1fZQoaAZHQJxKIDwH7gtoB03oA2gIR0CmgELdepn6dX2UKGgGR0CXgb5Lh73PaAdN6ANoCEdApoDKGzru6XV9lChoBkdAmgcW2PT5PGgHTegDaAhHQKaDQP+XJHR1fZQoaAZHQJr4U7o0Q9RoB03oA2gIR0Cmi2rzoUzsdX2UKGgGR0CYLnSTyJ9BaAdN6ANoCEdApoyCGvfTC3V9lChoBkdAm7+1BhQWN2gHTegDaAhHQKaNB+m3vx91fZQoaAZHQJkoM1qFh5RoB03oA2gIR0Cmj4FtTDO1dX2UKGgGR0CYrJZFXq7iaAdN6ANoCEdAppfjxwyZa3V9lChoBkdAmPPcM3IdVGgHTegDaAhHQKaY+tFrl/91fZQoaAZHQJei+39aUzNoB03oA2gIR0CmmX7qQiiZdX2UKGgGR0CZWdC8e0XxaAdN6ANoCEdAppv24wyqMnV9lChoBkdAlngtWQwK0GgHTegDaAhHQKalBpblijN1fZQoaAZHQJcfpmOEM9doB03oA2gIR0Cmpjt4Z/CqdX2UKGgGR0CZkn2xptaZaAdN6ANoCEdApqa8qWkadnV9lChoBkdAlyEZLytmtmgHTegDaAhHQKapSegctGx1fZQoaAZHQJltykwevIRoB03oA2gIR0CmsXoC+10DdX2UKGgGR0CaHIQGfPHDaAdN6ANoCEdAprKXqFAVwnV9lChoBkdAmnWe5z5oG2gHTegDaAhHQKazHLV4HHF1fZQoaAZHQJe73ksBhhJoB03oA2gIR0CmtZhWYF7ldX2UKGgGR0CXtQ5le4TcaAdN6ANoCEdApr3E7IT4+XV9lChoBkdAl8A3izcAR2gHTegDaAhHQKa+4N5t3wF1fZQoaAZHQJb5Eiliz9loB03oA2gIR0Cmv2Yd6sySdX2UKGgGR0CU+OaW5YozaAdN6ANoCEdApsHfyup0fnV9lChoBkdAlYGYZl4C62gHTegDaAhHQKbKKrsByS51fZQoaAZHQI7U8O5J9RdoB03oA2gIR0Cmyz8/lhgFdX2UKGgGR0CUsevCdjG2aAdN6ANoCEdApsu//3nIQ3V9lChoBkdAkrzThUBGQWgHTegDaAhHQKbOQxbB42V1fZQoaAZHQIiY+YIBzWBoB03oA2gIR0Cm1psyad+YdX2UKGgGR0CTQIdU83dcaAdN6ANoCEdAptew7T2FnXV9lChoBkdAlyrGBWgezWgHTegDaAhHQKbYMpVCHAR1fZQoaAZHQJh0ig5BC2NoB03oA2gIR0Cm2qyd4FA3dX2UKGgGR0CY4C1/lQuVaAdN6ANoCEdApuLWCXhOxnV9lChoBkdAme88jRlYl2gHTegDaAhHQKbj8mVJL/V1fZQoaAZHQJqSG11GLDRoB03oA2gIR0Cm5HUbkwN9dX2UKGgGR0CXxpsGPgejaAdN6ANoCEdApub2/zreInV9lChoBkdAkzHcpG4I8mgHTegDaAhHQKbvGWw/xDt1fZQoaAZHQJs/+hYeT3ZoB03oA2gIR0Cm8DYWk8A8dX2UKGgGR0CYpc/20zCUaAdN6ANoCEdApvC7KFIuoXV9lChoBkdAlHj+EIw/PmgHTegDaAhHQKbzPORDCxh1fZQoaAZHQJFhGAy2x6hoB03oA2gIR0Cm+7N+1Bt2dX2UKGgGR0CSBweyzHCGaAdN6ANoCEdApvzZ4fOlf3V9lChoBkdAiFGxiw0O3GgHTegDaAhHQKb9ZU6PsAx1fZQoaAZHQIdpnFglWwNoB03oA2gIR0Cm//FfAsTWdX2UKGgGR0CT3mPI4lyBaAdN6ANoCEdApwg6g00m+nV9lChoBkdAlVgJJwsGxGgHTegDaAhHQKcJWa2F36h1fZQoaAZHQJPHPuQZGaxoB03oA2gIR0CnCeEKmbb2dX2UKGgGR0CT5EPSDyvtaAdN6ANoCEdApwxx1/2Cd3V9lChoBkdAfAXGjKxLTWgHTegDaAhHQKcU2Qe3hGZ1fZQoaAZHQJQ1xsGgSOBoB03oA2gIR0CnFfzDXOGCdX2UKGgGR0CQ0ysKsuFpaAdN6ANoCEdApxaAS39aU3V9lChoBkdAlN3KbayrxWgHTegDaAhHQKcY/l1bJOp1fZQoaAZHQJMyqLMs6JZoB03oA2gIR0CnIUlEiMYNdX2UKGgGR0CSfbG7z06HaAdN6ANoCEdApyJnck+otXV9lChoBkdAkFOZMg2ZRmgHTegDaAhHQKci6UlAu7J1fZQoaAZHQJCR3X18LKFoB03oA2gIR0CnJWWnsLOSdX2UKGgGR0CWPO2QGOdYaAdN6ANoCEdApy20YsNDt3V9lChoBkdAmXKk4//vOWgHTegDaAhHQKcuzYQJ5Vx1fZQoaAZHQJXdVXZGrjpoB03oA2gIR0CnL085bQkYdX2UKGgGR0CUfEujRD1HaAdN6ANoCEdApzHU50bLlnV9lChoBkdAldc2qxTsIGgHTegDaAhHQKc6Jq/M4cZ1fZQoaAZHQJL6J7fHggpoB03oA2gIR0CnOz04zabndX2UKGgGR0CBn8miQDFIaAdN6ANoCEdApzvDm+0w8HV9lChoBkdAkztlnEl3QmgHTegDaAhHQKc+U3+dbxF1fZQoaAZHQI06y15Sm65oB03oA2gIR0CnRo3N1QqJdX2UKGgGR0CTvAnOSntOaAdN6ANoCEdAp0eyPXCj13V9lChoBkdAlBgglSjxkWgHTegDaAhHQKdIMbm2b5N1fZQoaAZHQJUlg6uGKyhoB03oA2gIR0CnSrmJ3xFzdX2UKGgGR0Cb0tGcFyJbaAdN6ANoCEdAp1MXv+fh/HV9lChoBkdAgXZ034sVcmgHTegDaAhHQKdUNl/Yrax1fZQoaAZHQIbvMjHGS6loB03oA2gIR0CnVLwQtjCpdX2UKGgGR0CKKbMh5gPVaAdN6ANoCEdAp1dQ0j1PFnV9lChoBkdAhofOMuOCG2gHTegDaAhHQKdfq0elsP91fZQoaAZHQI2DONkvsZ5oB03oA2gIR0CnYMRagVXWdX2UKGgGR0CQoCfkWAPNaAdN6ANoCEdAp2FFU2kzoHV9lChoBkdAkKv1HavicWgHTegDaAhHQKdjxq7iADt1fZQoaAZHQJj56TvAoG9oB03oA2gIR0CnbAj9OymidX2UKGgGR0CV28nXNC7caAdN6ANoCEdAp20h//echHV9lChoBkdAk53e+AVfu2gHTegDaAhHQKdtpK9PDYR1fZQoaAZHQJJeLIq9XcRoB03oA2gIR0CncCnoPkJbdX2UKGgGR0CXpl3H7xd6aAdN6ANoCEdAp3hOr+5vtXV9lChoBkdAmAjfl2eQMmgHTegDaAhHQKd5aflIVdp1fZQoaAZHQJiDaPgeii9oB03oA2gIR0Cneeq02LpBdX2UKGgGR0CTutZwGW2PaAdN6ANoCEdAp3xbCYTkAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 59119, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (899 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1436.2094675395056, "std_reward": 233.00661136898674, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-11T08:23:52.813735"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b81a428d3c9141333e961758df7ac22bf8253707c2a89ea7cfaa70d16bc9b15b
|
3 |
+
size 2763
|