--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-analysis-model-team-28 results: [] --- # finetuning-sentiment-analysis-model-team-28 This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5030 - Accuracy: 0.9086 - F1: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1075 | 1.0 | 175 | 0.3345 | 0.9129 | 0.9440 | | 0.1063 | 2.0 | 350 | 0.4080 | 0.9014 | 0.9359 | | 0.0262 | 3.0 | 525 | 0.5030 | 0.9086 | 0.9401 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.15.2