alex-miller commited on
Commit
835431f
1 Parent(s): 15bf3a3

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: alex-miller/ODABert
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: multi-dimensional-disability
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # multi-dimensional-disability
20
+
21
+ This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7126
24
+ - Accuracy: 0.8881
25
+ - F1: 0.8100
26
+ - Precision: 0.7556
27
+ - Recall: 0.8728
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-06
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 24
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.962 | 1.0 | 437 | 0.9254 | 0.8485 | 0.7272 | 0.7161 | 0.7386 |
59
+ | 0.8959 | 2.0 | 874 | 0.8276 | 0.8762 | 0.7906 | 0.7354 | 0.8546 |
60
+ | 0.8419 | 3.0 | 1311 | 0.7560 | 0.8801 | 0.7925 | 0.7517 | 0.8379 |
61
+ | 0.7452 | 4.0 | 1748 | 0.7235 | 0.8856 | 0.8048 | 0.7540 | 0.8630 |
62
+ | 0.7234 | 5.0 | 2185 | 0.7126 | 0.8881 | 0.8100 | 0.7556 | 0.8728 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.38.2
68
+ - Pytorch 2.2.1+cu121
69
+ - Datasets 2.18.0
70
+ - Tokenizers 0.15.2