--- license: apache-2.0 base_model: alex-miller/ODABert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: multi-dimensional-disability results: [] --- # multi-dimensional-disability This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7126 - Accuracy: 0.8881 - F1: 0.8100 - Precision: 0.7556 - Recall: 0.8728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.962 | 1.0 | 437 | 0.9254 | 0.8485 | 0.7272 | 0.7161 | 0.7386 | | 0.8959 | 2.0 | 874 | 0.8276 | 0.8762 | 0.7906 | 0.7354 | 0.8546 | | 0.8419 | 3.0 | 1311 | 0.7560 | 0.8801 | 0.7925 | 0.7517 | 0.8379 | | 0.7452 | 4.0 | 1748 | 0.7235 | 0.8856 | 0.8048 | 0.7540 | 0.8630 | | 0.7234 | 5.0 | 2185 | 0.7126 | 0.8881 | 0.8100 | 0.7556 | 0.8728 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2