nazneen commited on
Commit
884c813
·
1 Parent(s): 2a4e7c0

model documentation

Browse files
Files changed (1) hide show
  1. README.md +156 -14
README.md CHANGED
@@ -1,12 +1,13 @@
 
1
  ---
2
  language:
3
  - da
 
4
  tags:
5
  - bert
6
  - pytorch
7
  - sentiment
8
  - polarity
9
- license: cc-by-sa-4.0
10
  datasets:
11
  - Twitter Sentiment
12
  - Europarl Sentiment
@@ -16,24 +17,165 @@ widget:
16
  - text: Det er super godt
17
  ---
18
 
19
- # Danish BERT Tone for sentiment polarity detection
20
-
21
- The BERT Tone model detects sentiment polarity (positive, neutral or negative) in Danish texts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  It has been finetuned on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO.
23
-
24
- See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) for more details.
25
-
26
-
27
- Here is how to use the model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ```python
30
  from transformers import BertTokenizer, BertForSequenceClassification
31
-
32
  model = BertForSequenceClassification.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
33
  tokenizer = BertTokenizer.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
34
  ```
35
-
36
- ## Training data
37
-
38
- The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets.
39
 
 
1
+
2
  ---
3
  language:
4
  - da
5
+ license: cc-by-sa-4.0
6
  tags:
7
  - bert
8
  - pytorch
9
  - sentiment
10
  - polarity
 
11
  datasets:
12
  - Twitter Sentiment
13
  - Europarl Sentiment
 
17
  - text: Det er super godt
18
  ---
19
 
20
+ # Model Card for Danish BERT
21
+ Danish BERT Tone for sentiment polarity detection
22
+
23
+
24
+
25
+ # Model Details
26
+
27
+ ## Model Description
28
+
29
+ The BERT Tone model detects sentiment polarity (positive, neutral or negative) in Danish texts. It has been finetuned on the pretrained Danish BERT model by BotXO.
30
+
31
+ - **Developed by:** DaNLP
32
+ - **Shared by [Optional]:** Hugging Face
33
+ - **Model type:** Text Classification
34
+ - **Language(s) (NLP):** Danish (da)
35
+ - **License:** cc-by-sa-4.0
36
+ - **Related Models:** More information needed
37
+ - **Parent Model:** BERT
38
+ - **Resources for more information:**
39
+ - [GitHub Repo](https://github.com/certainlyio/nordic_bert)
40
+ - [Associated Documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone)
41
+
42
+
43
+ # Uses
44
+
45
+ ## Direct Use
46
+
47
+ This model can be used for text classification
48
+
49
+
50
+ ## Downstream Use [Optional]
51
+
52
+
53
+ More information needed.
54
+
55
+
56
+ ## Out-of-Scope Use
57
+
58
+ The model should not be used to intentionally create hostile or alienating environments for people.
59
+
60
+ # Bias, Risks, and Limitations
61
+
62
+
63
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
64
+
65
+
66
+ ## Recommendations
67
+
68
+
69
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
+
71
+
72
+ # Training Details
73
+
74
+ ## Training Data
75
+
76
+ The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets.
77
+
78
+ ## Training Procedure
79
+
80
+ ### Preprocessing
81
+
82
  It has been finetuned on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO.
83
+
84
+ ### Speeds, Sizes, Times
85
+ More information needed.
86
+
87
+ # Evaluation
88
+
89
+
90
+ ## Testing Data, Factors & Metrics
91
+
92
+ ### Testing Data
93
+
94
+ More information needed.
95
+
96
+ ### Factors
97
+
98
+
99
+
100
+ ### Metrics
101
+
102
+ F1
103
+
104
+ ## Results
105
+
106
+ More information needed.
107
+
108
+ # Model Examination
109
+
110
+ More information needed.
111
+
112
+ # Environmental Impact
113
+
114
+
115
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
116
+
117
+ - **Hardware Type:** More information needed.
118
+ - **Hours used:** More information needed.
119
+ - **Cloud Provider:** More information needed.
120
+ - **Compute Region:** More information needed.
121
+ - **Carbon Emitted:** More information needed.
122
+
123
+ # Technical Specifications [optional]
124
+
125
+ ## Model Architecture and Objective
126
+
127
+ More information needed.
128
+
129
+ ## Compute Infrastructure
130
+
131
+ More information needed.
132
+
133
+ ### Hardware
134
+
135
+ More information needed.
136
+
137
+ ### Software
138
+
139
+ More information needed.
140
+
141
+ # Citation
142
+
143
+ **BibTeX:**
144
+
145
+ More information needed.
146
+
147
+ **APA:**
148
+
149
+ More information needed.
150
+
151
+ # Glossary [optional]
152
+
153
+ More information needed.
154
+
155
+ # More Information [optional]
156
+
157
+ More information needed.
158
+
159
+ # Model Card Authors [optional]
160
+
161
+ DaNLP in collaboration with Ezi Ozoani and the Hugging Face team
162
+
163
+ # Model Card Contact
164
+
165
+ More information needed.
166
+
167
+ # How to Get Started with the Model
168
+
169
+ Use the code below to get started with the model.
170
+ <details>
171
+ <summary> Click to expand </summary>
172
 
173
  ```python
174
  from transformers import BertTokenizer, BertForSequenceClassification
175
+
176
  model = BertForSequenceClassification.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
177
  tokenizer = BertTokenizer.from_pretrained("DaNLP/da-bert-tone-sentiment-polarity")
178
  ```
179
+ </details>
180
+
 
 
181