Zero-Shot Classification
Transformers
PyTorch
Safetensors
bert
text-classification
Inference Endpoints
saattrupdan commited on
Commit
17d420d
1 Parent(s): 27753bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -1
README.md CHANGED
@@ -73,9 +73,11 @@ We report Matthew's Correlation Coefficient (MCC), macro-average F1-score as wel
73
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
74
  | :-------- | :------------ | :--------- | :----------- | :----------- |
75
  | `alexandrainst/scandi-nli-large` (this) | **73.80%** | **58.41%** | **86.98%** | 354M |
 
76
  | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 62.44% | 55.00% | 80.42% | 178M |
77
- | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 47.28% | 48.88% | 73.46% | **22M** |
78
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
 
79
 
80
 
81
  ## Training procedure
 
73
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
74
  | :-------- | :------------ | :--------- | :----------- | :----------- |
75
  | `alexandrainst/scandi-nli-large` (this) | **73.80%** | **58.41%** | **86.98%** | 354M |
76
+ | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 68.37% | 57.10% | 83.25% | 279M |
77
  | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 62.44% | 55.00% | 80.42% | 178M |
78
+ | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M |
79
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
80
+ | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 47.28% | 48.88% | 73.46% | **22M** |
81
 
82
 
83
  ## Training procedure