Commit
·
d5b763c
1
Parent(s):
a9b7e15
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: zero-shot-classification
|
3 |
+
language:
|
4 |
+
- da
|
5 |
+
- no
|
6 |
+
- nb
|
7 |
+
- sv
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- strombergnlp/danfever
|
11 |
+
- mnli_da
|
12 |
+
- mnli_sv
|
13 |
+
- mnli_nb
|
14 |
+
- cb_da
|
15 |
+
- cb_sv
|
16 |
+
- cb_nb
|
17 |
+
- fever_sv
|
18 |
+
- anli_sv
|
19 |
+
model-index:
|
20 |
+
- name: nb-bert-large-ner-scandi
|
21 |
+
results: []
|
22 |
+
widget:
|
23 |
+
- example_title: Nyhetsartikkel om FHI
|
24 |
+
text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.
|
25 |
+
candidate_labels: helse, politikk, sport, religion
|
26 |
+
---
|
27 |
+
|
28 |
+
# ScandiNLI - Natural Language Inference model for Scandinavian Languages
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish.
|
31 |
+
|
32 |
+
It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish.
|
33 |
+
|
34 |
+
The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally.
|
35 |
+
|
36 |
+
|
37 |
+
## Quick start
|
38 |
+
|
39 |
+
You can use this model in your scripts as follows:
|
40 |
+
|
41 |
+
```python
|
42 |
+
>>> from transformers import pipeline
|
43 |
+
>>> classifier = pipeline("zero-shot-classification", model="alexandrainst/nb-bert-large-nli-scandi")
|
44 |
+
>>> classifier(
|
45 |
+
... 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.',
|
46 |
+
... candidate_labels=['helse', 'politikk', 'sport', 'religion'],
|
47 |
+
... hypothesis_template="Dette eksempelet er {}",
|
48 |
+
)
|
49 |
+
{
|
50 |
+
'labels': ['helse', 'politikk', 'sport', 'religion'],
|
51 |
+
'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984],
|
52 |
+
'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.',
|
53 |
+
}
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
|
59 |
+
### Training hyperparameters
|
60 |
+
|
61 |
+
The following hyperparameters were used during training:
|
62 |
+
- learning_rate: 2e-05
|
63 |
+
- train_batch_size: 2
|
64 |
+
- eval_batch_size: 2
|
65 |
+
- seed: 4242
|
66 |
+
- gradient_accumulation_steps: 16
|
67 |
+
- total_train_batch_size: 32
|
68 |
+
- optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
|
69 |
+
- lr_scheduler_type: linear
|
70 |
+
- lr_scheduler_warmup_steps: 500
|
71 |
+
- max_steps: 50,000
|